
Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page i

SPECTRUM 128 KEYPAD SCANNING ROUTINES

MASKABLE INTERRUPT ROUTINE
This routine is nearly identical to that in a standard 48K Spectrum. The only difference is that the normal call to
address 02BF to scan the keyboard has been replaced by a call to address 386E. At this address is a new routine
which will initiate a scan of the keypad (if in 128K mode) and then the keyboard. Thus compatibility with a 48K
Spectrum is maintained although at the minor cost of slightly longer processing time.

004A MASK_INT PUSH AF
 PUSH HL

 LD HL,(5C78) [FRAMES] The highest byte of the FRAMES
 INC HL counter is only incremented when
 LD (5C78),HL [FRAMES] the value of the lower two bytes is
 LD A,H zero
 OR L
 JR NZ,0048, KEY_INT

 INC (IY+40) [FRAMES+3]

0048 KEY_INT PUSH BC
 PUSH DE
 CALL 386E, KEYS Scan the keypad and the keyboard
 POP DE
 POP BC
 POP HL
 POP AF
 EI
 RET

NEW ROM CODE

The new code added to the standard 48K Spectrum ROM is mainly devoted to the scanning and decoding of the
keypad. These routines occupy addresses 386E through to 3B3A. Addresses 3B3B through to 3C96 contain a
variety of routines for the following purposes: displaying the new tokens ‘PLAY’ and ‘SPECTRUM’, dealing
with the keypad when using INKEY$, handling new 128 BASIC error messages, and producing the TV tuner
display. Addresses 3BE1 to 3BFE and addresses 3C97 to 3CFF are unused and all contain 00.

SCAN THE KEYPAD AND THE KEYBOARD
This patch will attempt to scan the keypad if in 128K mode and will then scan the keyboard.

386E KEYS PUSH IX
 BIT 4,(IY+01) [FLAGS] Test if in 128K mode
 JR Z,3879, KEYS_CONT Z=in 48K mode

 CALL 3A42, KEYPAD Attempt to scan the keypad

3879 KEYS_CONT CALL 02BF, KEYBOARD Scan the keyboard
 POP IX
 RET

READ THE STATE OF THE OUTPUT LINES
This routine returns the state of the four output lines (bits 0-3) in the lower four bits of L. The LSB of L
corresponds to the output communication line to the keypad. In this way the state of the other three outputs are
maintained when the state of the LSB of L is changed and sent out to register 14 of the AY-3-8912.

387F READ_OUTPUTS LD C,FD FFFD = Address of the

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page ii

 LD D,FF command register (register 7)
 LD E,BF BFFD = Address of the
 LD B,D data register (register 14)
 LD A,07
 OUT (C),A Select command register
 IN H,(C) Read its status
 LD A,0E
 OUT (C),A Select data register
 IN A,(C) Read its status
 OR F0 Mask off the input lines
 LD L,A L=state of output lines at the
 RET keypad socket

SET THE OUTPUT LINE, BIT 0
The output line to the keypad is set via the LSB of L.

3896 SET_REG14 LD B,D
 LD A,0E
 OUT (C),A Select the data register
 LD B,E
 OUT (C),L Send L out to the data register
 RET Set the output line

FETCH THE STATE OF THE INPUT LINE, BIT 5
Return the state of the input line from the keypad in bit 5 of A.

389F GET_REG14 LD B,D
 LD A,0E
 OUT (C),A Select the data register
 IN A,(C) Read the input line
 RET

SET THE OUTPUT LINE LOW, BIT 0

38A7 RESET_LINE LD A,L
 AND FE Reset bit 0 of L
 LD L,A
 JR 3896, SET_REG14 Send out L to the data register

SET THE OUTPUT LINE HIGH, BIT 0

38AD SET_LINE LD A,L
 OR 01 Set bit 0 of L
 LD L,A
 JR 3896, SET_REG14 Send out L to the data register
MINOR DELAY ROUTINE
Delay for (B*13)+5 T-States

38B3 DELAY DJNZ 38B3, DELAY
 RET

MAJOR DELAY ROUTINE
Delay for (B*271)+5 T-states

38B6 DELAY2 PUSH BC
 LD B,10
 CALL 38B3, DELAY Inner delay of 135 T-States
 POP BC
 DJNZ 38B6, DELAY2

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page iii

 RET

MONITOR FOR THE INPUT LINE TO GO LOW
Monitor the input line, bit 5, for up to (B*108)+5 T-states.

38C0 MON_B5_LO PUSH BC
 CALL 389F, GET_REG14 Read the state of the input line
 POP BC
 AND 20 Test bit 5, the input line
 JR Z,38CB, EXT_MON_LO Exit if input line found low
 DJNZ 38C0, MON_B5_LO Repeat until timeout expires
38CB EXT_MON_LO RET

MONITOR FOR THE INPUT LINE TO GO HIGH
Monitor the input line, bit 5, for up to (B*108)+5 T-states.

38CC MON_B5_HI PUSH BC
 CALL 389F, GET_REG14 Read the state of the input line
 POP BC
 AND 20 Test bit 5, the input line
 JR NZ,38D7, EXT_MON_HI Exit if input line found low
 DJNZ 38CC, MON_B5_HI Repeat until timeout expires
38D7 EXT_MON_HI RET

READ KEY PRESS STATUS BIT
This entry point is used to read in the status bit for a keypad row. If a key is being pressed in the current row then
the bit read in will be a 1.

38D8 READ_STATUS CALL 387F, READ_OUTPUTS Read the output lines
 LD B,01 Read in one bit
 JR 38E4, READ_BIT

READ IN A NIBBLE
This entry point is used to read in a nibble of data from the keypad. It is used for two functions. The first is to
read in the poll nibble and the second is to read in a row of key press data. For a nibble of key press data, a bit
read in as 1 indicates that the corresponding key was pressed.

38DF READ_NIBBLE CALL 387F, READ_OUTPUTS Read the state of the output lines
 LD B,04 Read in four bits

38E4 READ_BIT PUSH BC
 CALL 389F, GET_REG14 Read the input line from the keypad
 POP BC
 AND 20 This line should initially be high
 JR Z,392D, LINE_ERROR2 Z=read in a 0, there must be an error

 XOR A The bits read in will be stored in
 register A
38EE BIT_LOOP PUSH BC Preserve the loop count and any bits
 PUSH AF read in so far
 CALL 38AD, SET_LINE Set the output line high

 LD B,A3 Monitor for 17609 T-states for the
 CALL 38C0, MON_B5_LO input line to go low
 JR NZ,392B, LINE_ERROR NZ=the line did not go low

 CALL 38A7, RESET_LINE Set the output line low
 JR 3901, BL_CONTINUE Insert a delay of 12 T-states

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page iv

38FF DEFB FF, FF

3901 BL_CONTINUE LD B,2B Delay for 564 T-states
 CALL 38B3, DELAY
 CALL 389F, GET_REG14 Read in the bit value
 BIT 5,A
 JR Z,3911, BL_READ_0 Z=read in a 0

 POP AF Retrieve read in bits
 SCF Set carry bit
 JR 3914, BL_STORE

3911 BL_READ_0 POP AF Retrieve read in bits
 SCF
 CCF Clear carry bit

3914 BL_STORE RRA Shift the carry bit into bit 0 of A
 PUSH AF Save bits read in
 CALL 38AD, SET_LINE Set the output line high

 LD B,26 Delay for 499 T-states
 CALL 38B3, DELAY

 CALL 38A7, RESET_LINE Set the output line low

 LD B,23 Delay for 460 T-states
 CALL 38B3, DELAY

 POP AF Retrieve read in bits
 POP BC Retrieve loop counter and repeat
 DJNZ 38EE, BIT_LOOP for all bits to read in
 RET

LINE ERROR
The input line was found at the wrong level. The output line is now set high which will eventually cause the
keypad to abandon its transmissions. The upper nibble of system variable FLAGS/ROW3 will be cleared to
indicate that communications to the keypad is no longer in progress.

392B LINE_ERROR POP AF
 POP BC Clear the stack

392D LINE_ERROR2 CALL 38AD, SET_LINE Set the output line high

 XOR A Clear FLAGS nibble
 LD (5B88),A [FLAGS/ROW3]
 INC A Return zero flag reset
 SCF
 CCF Return carry flag reset
 RET

POLL THE KEYPAD
The Spectrum 128 polls the keypad by changing the state of the output line and monitoring for responses from
the keypad on the input line. Before a poll occurs, the poll counter must be decremented until it reaches zero.
This counter causes a delay of three seconds before a communications attempt to the keypad is made. The routine
can exit at five different places and it is the state of the A register, the zero flag and the carry flag which indicates
the cause of the exit. This is summarised below:

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page v

A Register Zero Flag Carry Flag Cause
 0 set set Communications already established
 0 set reset Nibble read in OK
 1 reset reset Nibble read in with an error or i/p line initially low
 1 reset set Poll counter has not yet reached zero

The third bit of the nibble read in must be set for the poll to be subsequently accepted.

3938 ATTEMPT_POLL CALL 387F, READ_OUTPUTS Read the output line states

 LD A,(5B88) [FLAGS/ROW3] Has communications already been
 AND 80 established with the keypad?
 JR NZ,3999, AP_SKIP_POLL NZ=yes, so skip the poll

 CALL 389F, GET_REG14 Read the input line
 AND 20 It should be high initially
 JR Z,392D, LINE_ERROR2 Z=error, input line found low

 LD A,(5B88) [FLAGS/ROW3] Test if poll counter already zero thus
 AND A indicating a previous comms error
 JR NZ,395A, POLL_KEYPAD NZ=ready to poll the keypad

 INC A Indicate comms not established
 LD (5B88),A [FLAGS/ROW3]
 LD A,4C Reset the poll counter
 LD (5B89),A [ROW2/ROW1]
 JR 399C, PK_EXIT Exit the routine

395A POLL_KEYPAD LD A,(5B89) [ROW2/ROW1] Decrement the poll counter
 DEC A
 LD (5B89),A [ROW2/ROW1]
 JR NZ,399C, PK_EXIT Exit the routine if it is not yet zero

The poll counter has reached zero so a poll of the keypad can now occur.

 XOR A
 LD (5B88),A [FLAGS/ROW3] Indicate that a poll can occur
 LD (5B89),A [ROW2/ROW1]
 LD (5B8A),A [ROW4/ROW5] Clear all the row nibble stores

 CALL 38A7, RESET_LINE Set the output line low

 LD B,21 Wait up to 3569 T-States for the
 CALL 38C0, MON_B5_LO input line to go low
 JR NZ,392D, LINE_ERROR2 NZ=line did not go low

 CALL 38AD, SET_LINE Set the output line high

 LD B,24 Wait up to 3893 T-States for the
 CALL 38CC, MON_B5_HI input line to go high
 JR Z,392D, LINE_ERROR2 NZ=line did not go high

 CALL 38A7, RESET_LINE Set the output line low

 LD B,0F
 CALL 38B6, DELAY2 Delay for 4070 T-States
 CALL 38DF, READ_NIBBLE Read in a nibble of data
 JR NZ,392D, LINE_ERROR2 NZ=error occurred when reading
 in nibble

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page vi

 SET 7,A Set bit 7
 AND F0 Keep only the upper four bits
 (Bit 6 will be set if poll successful)
 LD (5B88),A [FLAGS/ROW3] Store the flags nibble
 XOR A
 SRL A Exit: Zero flag set, Carry flag reset
 RET

3999 AP_SKIP_POLL XOR A Communications already established
 SCF Exit: Zero flag set, Carry flag set
 RET

399C PK_EXIT XOR A Poll counter not zero
 INC A
 SCF Exit: Zero flag reset, Carry flag set
 RET

SCAN THE KEYPAD ROUTINE
If a successful poll of the keypad occurs then the five rows of keys are read in and a unique key code generated.

39A0 KEYPAD_SCAN CALL 3938, ATTEMPT_POLL Try to poll the keypad

 LD A,(5B88) [FLAGS/ROW3] Test the flags nibble
 CPL
 AND C0 Bits 6 and 7 must be set in FLAGS
 RET NZ NZ=poll was not successful

The poll was successful so now read in data for the five keypad rows.

 LD IX,5B8A [ROW4/ROW5]
 LD B,05 The five rows

39B0 KS_LOOP PUSH BC Save counter

 CALL 38D8, READ_STATUS Read the key press status bit
 JP NZ,3A3A, KS_ERROR NZ=error occurred

 BIT 7,A Test the bit read in
 JR Z,39DC, KS_NEXT Z=no key pressed in this row

 CALL 38DF, READ_NIBBLE Read in the row’s nibble of data
 JR NZ,3A3A, KS_ERROR NZ=error occurred

 POP BC Fetch the nibble loop counter
 PUSH BC
 LD C,A Move the nibble read in to C
 LD A,(IX+0) Fetch the nibble store
 BIT 0,B Test if an upper or lower nibble
 JR Z,39D6, KS_UPPER Z=upper nibble

 SRL C Shift the nibble to the lower position
 SRL C
 SRL C
 SRL C
 AND F0 Mask off the lower nibble of the
 JR 39D8, KS_STORE nibble store

39D6 KS_UPPER AND 0F Mask off the upper nibble of the
 nibble store

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page vii

39D8 KS_STORE OR C Combine the existing and new
 LD (IX+0),A nibbles and store them

39DC KS_NEXT POP BC Retrieve the row counter
 BIT 0,B Test if next nibble store is required
 JR NZ,39E3, KS_NEW NZ=use same nibble store

 DEC IX Point to the next nibble store
39E3 KS_NEW DJNZ 39B0, KS_LOOP Repeat for the next keypad row

All five rows have now been read so compose a unique code for the key pressed.

 LD E,80 Signal no key press found yet
 LD IX,5B88 [FLAGS/ROW3]
 LD HL,3A3F, KEY_MASKS Point to the key mask data
 LD B,03 Scan three nibbles

39F0 GEN_LOOP LD A,(IX+0) Fetch a pair of nibbles
 AND (HL) This will mask off the FLAGS
 nibble and the SHIFT/0 key
 JR Z,3A17, GEN_NEXT Z=no key pressed in these nibbles

 BIT 7,E Test if a key has already been found
 JR Z,3A3C, GEN_INVALID Z=multiple keys pressed

 PUSH BC Save the loop counter
 PUSH AF Save the byte of key bit data
 LD A,B Move loop counter to A
 JR 3A01, GEN_CONT A delay of 12 T-States

39FF DEFB FF, FF

3A01 GEN_CONT DEC A These lines of code generate base
 SLA A values of 7, 15 and 23 for the three
 SLA A nibble stores 5B88, 5B89 & 5B8A.
 SLA A
 OR 07
 LD B,A B=(loop counter-1)*8+7
 POP AF Fetch the byte of key press data

3A0C GEN_BIT SLA A Shift until a set key bit drops into the
 JP C,3A13, GEN_FOUND carry flag

 DJNZ 3A0C, GEN_BIT Decrement B for each ‘unsuccessful’
 shift of the A register

3A13 GEN_FOUND LD E,B E=a unique number for the key
 pressed, between 1 - 19 except 2 & 3

 POP BC As a result shifting the set key bit
 into the carry flag, the A register will
 hold 00 if only one key was pressed
 JR NZ,3A3C, GEN_INVALID NZ=multiple keys pressed

3A17 GEN_NEXT INC IX Point to the next nibble store
 INC HL Point to the corresponding mask data
 DJNZ 39F0, GEN_LOOP Repeat for all three ‘nibble’ bytes

 BIT 7,E Test if any keys were pressed

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page viii

 JR NZ,3A27, GEN_POINT NZ=no keys were pressed

 LD A,E Copy the key code
 AND FC Test for the ‘.’ key (E=1)
 JR Z,3A27, GEN_POINT Z=‘.’ key pressed

 DEC E
 DEC E Key code in range 2 - 17

The E register now holds a unique key code value between 1 and 17.

3A27 GEN_POINT LD A,(5B8A) [ROW4/ROW5] Test if the SHIFT key was pressed
 AND 08
 JR Z,3A34, GEN_NOSHIFT Z=the SHIFT key was not pressed

The SHIFT key was pressed or no key was pressed.

 LD A,E Fetch the key code
 AND 7F Mask off ‘no key pressed’ bit
 ADD A,12 Add on a shift offset of 12
 LD E,A

Add a base offset of 5A to all key codes. Note that no key press will result in a key code of DA. This is the only
code with bit 7 set and so will be detected later.

3A34 GEN_NOSHIFT LD A,E
 ADD A,5A Add a base offset of 5A
 LD E,A Return key codes in range 5B - 7D
 XOR A
 RET Exit: Zero flag set, key found OK

These two lines belong with the loop above to read in the five keypad rows and are jumped to when an error
occurs during reading in a nibble of data.

3A3A KS_ERROR POP BC Clear the stack and exit
 RET Exit: Zero flag reset

3A3C GEN_INVALID XOR A Exit: Zero flag reset indicating an
 INC A invalid key press
 RET

KEYPAD MASK DATA

3A3F KEY_MASKS DEFB 0F, FF, F2 Key mask data

READ THE KEYPAD
This routine reads the keypad and handles key repeat and decoding. The bulk of the key repeat code is very
similar to that used in the equivalent keyboard routine and works are follows. A double system of KSTATE
system variables (KSTATE0 - KSTATE3 and KSTATE4 - KSTATE7) is used to allow the detection of one key
while in the repeat period of the previous key. In this way, a ‘spike’ from another key will not stop the previous
key from repeating. For a new key to be acknowledged, it must be held down for at least 1/5th of a second, i.e.
ten calls to KEYPAD. The KSTATE system variables store the following data:

 KSTATE0/4 Un-decoded Key Value (00-27 for keyboard, 5B-7D for keypad, FF for no key)
 KSTATE1/5 10 Call Counter
 KSTATE2/6 Repeat Delay
 KSTATE3/7 Decoded Key Value

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page ix

The code returned is then stored in system variable LAST_K (5C08) and a new key signalled by setting bit 5 of
FLAGS (5C3B).

If the Spectrum 128 were to operate identically to the standard 48K Spectrum when in 48K mode, it would have
to spend zero time in reading the keypad. As this is not possible, the loading on the CPU is reduced by scanning
the keypad upon every other interrupt. A ‘10 Call Counter’ is then used to ensure that a key is held down for at
least 1/5th of a second before it is registered. Note that this is twice as long as for keyboard key presses and so
the keypad key repeat delay is halved.

At every other interrupt the keypad scanning routine is skipped. The net result of the routine is simply to
decrement both ‘10 Call Counters’, if appropriate. By loading the E register with 80 ensures that the call to
KP_TEST will reject the key code and cause a return. A test for keyboard key codes prevents the Call Counter
decrements affecting a keyboard key press. It would have been more efficient to execute a return upon every
other call to KEYPAD and then to have used a ‘5 Call Counter’ just as the keyboard routine does.

A side effect of both the keyboard and keypad using the same KSTATE system variables is that if a key is held
down on the keypad and then a key is held down on the keyboard, both keys will be monitored and repeated
alternatively, but with a reduced repeat delay. This delay is between the keypad key repeat delay and the
keyboard key repeat delay. This occurs because both the keypad and keyboard routines will decrement the
KSTATE system variable Call Counters. The keypad routine ‘knows’ of the existence of keyboard key codes but
the reverse is not true.

3A42 KEYPAD LD E,80 Signal no key pressed
 LD A,(5C78) [FRAMES]
 AND 01 Scan the keypad every other
 JR NZ,3A4F, KP_CHECK interrupt

 CALL 39A0, KEYPAD_SCAN
 RET NZ NZ=no valid key pressed

3A4F KP_CHECK LD HL,5C00 [KSTATE0] Test the first KSTATE variable

3A52 KP_LOOP BIT 7,(HL) Is the set free?
 JR NZ,3A62, KP_CH_SET NZ=yes

 LD A,(HL) Fetch the un-decoded key value
 CP 5B Is it a keyboard code?
 JR C,3A62, KP_CH_SET C=yes, so do not decrement counter

 INC HL
 DEC (HL) Decrement the 10 Call Counter
 DEC HL
 JR NZ,3A62, KP_CH_SET If the counter reaches zero, then
 signal the set is free
 LD (HL),FF

3A62 KP_CH_SET LD A,L Jump back and test the second set if
 LD HL,5C04 [KSTATE4] not yet considered
 CP L
 JR NZ,3A52 KP_LOOP

 CALL 3AAE, KP_TEST Test for valid key combinations and
 RET NZ return if invalid

 LD A,E Test if the key in the first set is being
 LD HL,5C00 [KSTATE0] repeated
 CP (HL)
 JR Z,3A9E, KP_REPEAT Jump if being repeated

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page x

 EX DE,HL Save the address of KSTATE0
 LD HL,5C04 [KSTATE4] Test if the key in the second set is
 CP (HL) being repeated
 JR Z,3A9E, KP_REPEAT Jump if being repeated

A new key will not be accepted unless one of the KSTATE sets is free.

 BIT 7,(HL) Test if the second set is free
 JR NZ,3A83, KP_NEW Jump if set is free

 EX DE,HL
 BIT 7,(HL) Test if the first set is free
 RET Z Return if no set is free

3A83 KP_NEW LD E,A Pass the key code to the E register
 LD (HL),A and to KSTATE0/4
 INC HL
 LD (HL),0A Set the ‘10 Call Counter’ to 10
 INC HL

 LD A,(5C09) [REPDEL] Fetch the initial repeat delay
 SRL A Divide delay by two
 LD (HL),A Store the repeat delay
 INC HL

 CALL 3AD7, KP_DECODE Decode the keypad key code
 LD (HL),E and store it in KSTATE3/7

This section is common for both new keys and repeated keys.

3A94 KP_END LD A,E
 LD (5C08),A [LAST_K] Store the key value in LAST_K
 LD HL,5C3B, FLAGS
 SET 5,(HL) Signal a new key pressed
 RET

THE KEY REPEAT SUBROUTINE

3A9E KP_REPEAT INC HL
 LD (HL),0A Reset the ‘10 Call Counter’ to 10
 INC HL
 DEC (HL) Decrement the repeat delay
 RET NZ Return if not zero

 LD A,(5C0A) [REPPER] The subsequent repeat delay is
 SRL A divided by two and stored
 LD (HL),A
 INC HL
 LD E,(HL) The key repeating is fetched
 JR 3A94, KP_END and then returned in LAST_K

THE TEST FOR A VALID KEY CODE SUBROUTINE
The zero flag is returned set if the key code is valid. No key press, SHIFT only or invalid shifted key presses
return the zero flag reset.

3AAE KP_TEST LD A,E
 LD HL,5B66, FLAGS3 Test if in BASIC or EDIT mode
 BIT 0,(HL)
 JR Z,3ABC, KPT_EDIT Z=EDIT mode

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page xi

Test key codes when in BASIC/CALCULATOR mode

 CP 6D Test for shifted keys
 JR NC,3AD4, KPT_INVALID and signal an error if found

3ABA KPT_OK XOR A Signal valid key code
 RET Exit: Zero flag set

Test key codes when in EDIT/MENU mode.

3ABC KPT_EDIT CP 80 Test for no key press
 JR NC,3AD4, KPT_INVALID NC=no key press

 CP 6C Test for SHIFT on its own
 JR NZ,3ABA, KPT_OK NZ=valid key code

3AC4 DEFB 00, 00, 00, 00 Delay for 64 T-States
 DEFB 00, 00, 00, 00
 DEFB 00, 00, 00, 00
 DEFB 00, 00, 00, 00

3AD4 KPT_INVALID XOR A Signal invalid key code
 INC A
 RET Exit: Zero flag reset

THE KEY DECODING SUBROUTINE

3AD7 KP_DECODE PUSH HL Save the KSTATE pointer
 LD A,E
 SUB 5B Reduce the key code range to
 LD D,00 00 - 22 and transfer to DE
 LD E,A

 LD HL,5B66, FLAGS3 Test if in EDIT or BASIC mode
 BIT 0,(HL)
 JR Z,3AEA, KPD_EDIT Z=EDIT/MENU mode

Use Table 1 when in CALCULATOR/BASIC mode.

 LD HL,3B13, KPD_TABLE1
 JR 3B0F, KPD_EXIT Look up the key value

Deal with EDIT/MENU mode.

3AEA KPD_EDIT LD HL,3B25, KPD_TABLE4 Use Table 4 for unshifted key
 CP 11 presses
 JR C,3B0F, KPD_EXIT

Deal with shifted keys in EDIT/MENU mode.

Use Table 3 with SHIFT 1 (delete to beginning of line), SHIFT 2 (delete to end of line), SHIFT 3 (SHIFT
TOGGLE). Note that although SHIFT TOGGLE produces a unique valid code, it actually performs no function
when editing a BASIC program.

 LD HL,3B21, KPD_TABLE3
 CP 15 Test for SHIFT 1
 JR Z,3B0F, KPD_EXIT

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page xii

 CP 16 Test for SHIFT 2
 JR Z,3B0F, KPD_EXIT
 JR 3B01, KPD_CONT Delay for 12 T-States

3AFE DEFB 00, FF, FF Unused locations

3B01 KPD_CONT CP 17 Test for SHIFT 3
 JR Z,3B0F, KPD_EXIT

Use Table 2 with SHIFT 4 (delete to beginning of word) and SHIFT 5 (delete to end of word).

 LD HL,3B18, KPD_TABLE2
 CP 21 Test for SHIFT 4 and above
 JR NC,3B0F, KPD_EXIT

Use Table 1 for all other shifted key presses.

 LD HL,3B13, KPD_TABLE1

3B0F KPD_EXIT ADD HL,DE Look up the key value
 LD E,(HL)
 POP HL Retrieve the KSTATE address
 RET

THE KEYPAD DECODE LOOK-UP TABLES

3B13 KPD_TABLE1 DEFB 2E, 0D, 33, 32 ‘.’, ENTER, 3, 2
 DEFB 31 1
3B18 KPD_TABLE2 DEFB 29, 28, 2A, 2F), (, *, /
 DEFB 2D, 39, 38, 37 - , 9, 8, 7
 DEFB 2B +
3B21 KPD_TABLE3 DEFB 36, 35, 34, 30 6, 5, 4, 0
3B25 KPD_TABLE4 DEFB A5, 0D, A6, A7 bottom, ENTER, top, end of line
 DEFB A8, A9, AA, 0B start of line, TOGGLE, DEL right, Up
 DEFB 0C, 07, 09, 0A DEL, CMND, Right, Down
 DEFB 08, AC, AD, AE Left, down ten, up ten, end word
 DEFB AF beginning of word
 DEFB B0, B1, B2, B3 DEL to end of line, DEL to start of
 line, SHIFT TOGGLE, DEL to end
 of word
 DEFB B4 DEL to beginning of word

3B3B – 3B6B Other new Spectrum 128 routines
 occupy these locations. They do not
 deal with the keypad.

INKEY$ ROUTINE TO DEAL WITH THE KEYPAD

3B6C KEYSCAN2 CALL 028E, KEYSCAN Scan the keyboard
 LD C,00
 JR NZ,3B80, KPI_SCAN NZ=multiple keys

 CALL 031E, K_TEST
 JR NC,3B80, KPI_SCAN NC=shift only or no key

 DEC D
 LD E,A
 CALL 0333, K_DECODE
 JP 2657, S_CONT Get string and continue scanning

Spectrum 128 ROM Disassembly Keypad Routines

Documented By Paul Farrow Page xiii

3B80 KPI_SCAN BIT 4,(IY+01) 128K mode?
 JP Z,2660, S_IK$_STK Z=no, stack keyboard code
 DI Disable interrupts whilst scanning
 CALL 39A0, KEYPAD_SCAN the keypad
 EI
 JR NZ,3B9A, KPI_INVALID NZ=multiple keys
 CALL 3AAE, KP_TEST Test the keypad key code
 JR NZ,3B9A, KPI_ INVALID NZ=no key, shift only or invalid
 combination
 CALL 3AD7, KP_DECODE Form the key code
 LD A,E
 JP 2657, S_CONT Get string and continue scanning

3B9A KPI_ INVALID LD C,00 Signal no key, i.e. length=0
 JP 2660, S_IK$_STK

3B9F – 3BDD Other new Spectrum 128 routines
 occupy these locations and these do not
 deal with the keypad.

3BDE KP_SCAN2 JP 3C01, KP_SCAN This is not called from either ROM. It
 can be used to scan the keypad.

3BE1 – 3C00 Other new Spectrum 128 routines
 occupy these locations and these do not
 deal with the keypad.

3C01 KP_SCAN JP 39A0, KEYPAD_SCAN This was to be called via the vector table
 in the EDITOR ROM but due to a
 programming error it never gets called.

3C04 – 3C96 Other new Spectrum 128 routines
 occupy these locations and these do not
 deal with the keypad.

3C97 – 3CFF Unused locations

EDITOR ROM CODE

The EDITOR ROM does not contain any routines to directly scan or decode the keypad. It does however contain
a fifteen entry vector table at location 0100 that points to useful routines within the ROMs, including the keypad
scanning routine. The table is designed to allow machine code programs to reliably access these routines even if
subsequent versions of the ROMs store them at different locations. Note that a programming error prevents the
keypad entry from working.

0100 – 0117 Vector table entries. These do not relate
 to the keypad.

0118 KPSCAN JP 012D, KPSCAN2 Vector table entry for the keypad routine.

011B – 012C Vector table entries. These do not relate
 to the keypad.

012D KPSCAN2 RST 28 Make a 48K ROM call to KP_SCAN.
 DEFW 3B01, KP_SCAN Note that this should have been 3C01.
 RET

