

sinclair

SPECTRA manual

sinclair

SPECTRA manual

by Paul Farrow

Fourth Edition 2013
© 2012 by Paul Farrow
www.zxresourcecentre.co.uk

http://www.zxresourcecentre.co.uk/

First published 2012
Second edition 2012
Third edition 2013
Fourth edition 2013
© 2012 Paul Farrow

sinclair logo © Amstrad plc.

Front cover illustration by John Harris, and used with kind permission.

Prints of his artwork used for the original ZX Spectrum manual covers are available from:
www.alisoneldred.com/thumbsJohnHarris-Prints-3-1.html

http://www.alisoneldred.com/thumbsJohnHarris-Prints-3-1.html

Contents

(cont. over)

Contents

CHAPTER 1
Introduction Page 5

A guide to the features provided by the SPECTRA interface.

CHAPTER 2
Setting up the interface Page 9

How to attach the SPECTRA interface to the Spectrum and how to configure its settings.

CHAPTER 3
SCART connection Page 15

Describes the SCART connection to a TV, including details on the wiring of the cable
required and how to enable sound output. Discusses the purpose of the video signal

absent indicator LED and how to resolve a detected problem.

CHAPTER 4
New display modes Page 21

Describes the range of new display modes available and how they are generated, and
provides details on when you might need to disable them.

CHAPTER 5
Joystick socket Page 43

Describes the pin-out of the joystick socket and how it can be read, and provides details
on when you might need to disable it.

CHAPTER 6
RS232 socket Page 47

Describes the pin-out of the RS232 socket, and includes details on the wiring of a cable
suitable for connecting to a PC. Explains how the socket can be controlled from software,
and provides details on when you might need to disable it.

CHAPTER 7
ROM support Page 57

Explains how to fit an onboard ROM or add support for ZX Interface 2 ROM cartridges, and
discusses the merits and limitations of each option. Describes how to override the
Spectrum’s ROM or extend it with new BASIC commands.

Contents

CHAPTER 8
Reset button and expansion bus Page 65

Explains the actions performed upon use of the reset button, and describes how the rear
expansion bus differs to that exposed by the Spectrum.

APPENDICES
A Power usage Page 71

B Hardware compatibility Page 73

C Troubleshooting Page 75

D References Page 77

CHAPTER 1

Chapter 1

CHAPTER

Chapter 1

7

Introduction
The SPECTRA interface is a multi-purpose peripheral designed for use with a 16K or 48K
Spectrum (50 Hz model only). It will not operate with a 128K Spectrum.

The SPECTRA interface provides the following facilities:

 SCART connectivity using RGB to provide a clearer, brighter and better centred
picture than that achievable using the standard TV connection.

 Sound output through the television speaker(s).

 New display modes, providing up to 64 colours, increased vertical and horizontal
colour resolution, and multiple screen support.

 Kempston compatible joystick socket, with support for auto-fire joysticks.

 ZX Interface 1 compatible RS232 serial port.

 ZX Interface 2 compatible ROM cartridge socket (optional fit).

 Onboard 16K ROM to override or extend the Spectrum’s ROM (optional fit).

 Reset button.

 Rear gold plated full width expansion bus.

Note that the ROM cartridge socket and the onboard ROM facilities are mutually exclusive
since it is physically only possible to fit one of them.

The photograph below identifies the key items found on the SPECTRA interface.

Identification of SPECTRA interface key items

Reset button
RS232 socket

Joystick socket

DC-DC
converter

ROM sockets
(optional fit) Configuration

switches

Video signal
absent indicator

Expansion bus

SCART socket

Chapter 1

8

The large square integrated circuit (IC) situated at the centre of the board implements the
core logic that controls the facilities of the SPECTRA interface. It is a high capacity complex

programmable logic device (CPLD) and is analogous to the uncommitted logic array (ULA)
inside the Spectrum.

The interface includes a set of switches that allow specific features to be individually
enabled or disabled, thereby achieving maximum compatibility with other interfaces and
existing software. By default, the SPECTRA board is shipped with all switches set to the
disabled position and hence it initially functions only as a SCART interface.

The video signal absent indicator provides visual feedback should the SPECTRA interface
detect a problem with the signals used from the Spectrum expansion bus that prevent it
from displaying a TV picture via the SCART socket. The indicator, a light emitting diode
(LED), will shine red if such an error is detected. The condition under which this can occur
is described in Chapter 3.

The following items are not included by default with the SPECTRA interface and so must be
obtained separately if the corresponding feature is to be used:

 A SCART cable which supports an RGB connection. The vast majority of
commercially available SCART cables will be suitable. The wiring of the cable
required is described in Chapter 3.

 A 2 x 15-way edge connector socket (if ROM cartridge support is required).

 A 28-way dual-in-line (DIL) IC socket (if an onboard ROM is required).

 A serial cable for use with the RS232 socket. The wiring of the cable required is
described in Chapter 6.

In addition, the television must have an RGB enabled SCART socket. There are three
different video formats that a SCART socket may support (RGB, composite video and
S-video) but often a socket will not support all of these. Televisions which have more than
one SCART socket may implement support for a different subset of video formats on each
socket, and so all available sockets should be tried until one is found which yields a
picture. It is advisable to consult the television instruction manual to determine which of its
SCART sockets provide support for connection via RGB.

Throughout the rest of this manual the terms expansion port and expansion bus are used
interchangeably to refer to the connection socket located at the rear of the Spectrum and
on some peripherals. Likewise, the terms interface, peripheral and device are used
interchangeably and refer to a physical board that can be plugged into the Spectrum’s
expansion port.

CHAPTER 2

Chapter 2

CHAPTER

Chapter 2

11

Setting up the interface
Before handling the SPECTRA interface it is advisable to touch a grounded metal object to
ensure you are free of static charge, e.g. external bare metal section of the casing of a
plugged in desktop PC. The board should then only be held by its edges to reduce the risk
of electrostatic discharge damaging the circuitry.

The SPECTRA interface is mounted on four plastic legs, one per corner of the board. If not
already fitted, these must first be attached. Each leg consists of a plastic bolt and a plastic
pillar. To attach a leg, push a bolt through a mounting hole from the top side of the board
and screw it into a pillar held underneath the board. The bolt can easily be tightened by
hand, but a flat bladed screwdriver may be used if preferred.

The SPECTRA interface should be connected to the Spectrum using the following
procedure:

 Ensure the television and the Spectrum are both powered off.

 Plug the SPECTRA interface into the Spectrum’s expansion port. If you wish to
connect other interfaces then the order in which they are connected becomes
important (see the section below entitled Connection order for details).

 Plug one end of the SCART cable into the SPECTRA interface and the other end into
a suitable SCART socket on the television.

 Power on the television.

 Power on the Spectrum.

The SPECTRA interface generates all necessary signalling voltages into the SCART socket
to inform the television to automatically display the RGB signal, and so there should be no
need to manually select the mode (unless your television does not implement this feature
of the SCART specification). It may take a few moments for the television to detect the
mode signalling and switch to display the SCART socket input.

The video signal absent indicator will light when the SPECTRA interface is powered on but
should almost immediately switch off and remain off. The condition under which it may
remain on is described in Chapter 3.

Connection order

The SPECTRA interface can coexist with other peripherals attached to the Spectrum, but
the order that these peripherals are connected becomes important if the SPECTRA
interface has the onboard ROM or ROM cartridge facility fitted and any of the other
peripherals contain their own ROM or support a plug-in ROM. This is because all ROMs
must share the same address space and as a result only one may ever be active at a time.
If there is only a single ROM based device connected (SPECTRA or other peripheral) then
the order of connection is unimportant.

Chapter 2

12

A peripheral wishing exclusive access to the ROM address space can instruct all devices
connected in front of it to relinquish control. However, it cannot signal such a request to
devices connected behind it. A peripheral’s position within the chain of connected devices
therefore sets its access priority to the ROM address space. The highest priority position is
at the end of the chain of devices, with priority decreasing the closer to the Spectrum a
device gets. The lowest priority ROM is always the one inside the Spectrum. To ensure all
connected ROM based devices coexist without conflict, it is necessary to determine the
appropriate priority for each of them. This then translates directly into the order that they
should be connected behind the Spectrum.

Often the connection order of peripherals is quite apparent. For example, the physical
shape of the ZX Interface 1 means it can only be connected directly behind the Spectrum.
Likewise, the reduced width expansion bus at the rear of the ZX Interface 2 means that only
a ZX Printer can be connected behind it, and so forces the ZX Interface 2 to become the
last connected ROM based device (the ZX Printer does not contain a ROM). If a SPECTRA
interface were added to a Spectrum system fitted with a ZX Interface 1 and ZX Interface 2
then clearly there is no choice but to connect it in between these two devices.

Another factor limiting the connection order is whether a peripheral provides a rear
expansion port. If it does not then it dictates that it must be the last connected device.
Although a cheap option for the manufacturer, it can be a frustration to the user who finds it
prevents the connection of other devices. The ZX Interface 2 falls into this category,
although it does at least provide the ability to connect a ZX Printer behind it. Sinclair
imposed this limitation on the ZX Interface 2 purely to keep the cost of its manufacture to a
minimum. Ideally, a ROM based device should disable its ROM whenever it detects a
peripheral connected behind it is requesting access to the ROM address space. However,
to do this requires circuitry, and hence increased cost. Sinclair removed the need for this
cost in the ZX Interface 2 by simply ensuring that no other Spectrum peripheral could be
connected behind it. Sinclair needed a way to allow a ZX Printer to be connected since it
was an official peripheral sold for the Spectrum. It could not be connected ahead of the
ZX Interface 2 since it used a smaller width edge connector (having originally been
developed for use with the ZX81), but this worked in Sinclair’s favour because it allowed the
ZX Interface 2 to be equipped with a rear expansion bus only wide enough and only
exposing those signals required by the ZX Printer.

Even though a peripheral might provide a rear full width expansion port, it does not
necessarily follow that all signals are routed to it and so there may be little choice but to
connect the peripheral behind the SPECTRA interface. If modifying the peripheral is
acceptable then an alternate solution would be to add the missing connections by
soldering wires between the peripheral’s edge connector and its expansion bus, thereby
allowing the peripheral to be connected in front of the SPECTRA interface.

For ROM based peripherals that do provide a complete rear expansion port, the order they
should be connected in depends upon the functionality they provide. ROM based devices
fall into three categories:

Chapter 2

13

1. The device supplements the Spectrum’s BASIC ROM by becoming active when a BASIC
error occurs or when particular BASIC commands are executed, e.g. ZX Interface 1,
floppy disk interface, Centronics printer interface.

2. The device temporarily overrides the Spectrum’s ROM when instigated by manual
intervention from the user, e.g. pressing the transfer button on a device such as
Romantic Robot’s Multiface or Datel’s Snapshot. Note that the Snapshot interface
actually contains an onboard RAM that must be initially loaded with the transfer
program from cassette. However, for the purposes of this document any interface that
operates using RAM in this manner is still deemed a ROM based device since it
operates by overriding the Spectrum’s ROM.

3. The device permanently overrides the Spectrum’s ROM, e.g. the ROM cartridges of the
ZX Interface 2.

Typically, these categories form the order in which device types should be connected, i.e.
those that supplement the Spectrum’s BASIC ROM should be connected first, followed by
those that temporarily override the Spectrum’s ROM, and finally those that permanently
override the Spectrum’s ROM. Devices that fall within the same category may generally be
connected in any order, unless the instructions for a particular device specifies otherwise.

Note that some ROM based peripherals that provide a full rear expansion port might not
monitor for devices connected behind them requesting access to the ROM address space.
Such peripherals should be connected at the end of the chain of attached devices, but
identifying them could prove a problem since there is no obvious visual indication (a
detailed examination of their circuitry is the only way). An example of such a device is the
RAM Turbo interface (a ZX Interface 2 clone, providing ROM cartridge and twin joystick
sockets).

Another potential problem can occur with devices that provide a Kempston joystick
interface but do not fully decode it on input port 31. The RAM Turbo is one such device,
which only decodes address line A5 instead of A5, A6 and A7. This causes it to clash with
the display mode register provided by the SPECTRA interface (described in Chapter 4). The
SPECTRA interface prevents these clashes occurring if such devices are connected behind
it (see Chapter 8 for further details).

The SPECTRA interface can support an onboard ROM or a ROM cartridge socket, but if
neither of these options has been fitted then the interface can be safely connected
anywhere along the chain of devices. When one of these options has been fitted, the
SPECTRA interface can be configured to operate as a device of category 1 or 3. Its ROM
may be configured to supplement the Spectrum’s BASIC ROM, in which case it should be
connected towards the front of the chain of attached devices. Or its ROM may be
configured to permanently override the Spectrum’s ROM just like a ZX Interface 2 ROM
cartridge, in which case the SPECTRA interface should be connected towards the end of
the chain of attached devices. However, unlike the ZX Interface 2, the SPECTRA interface
does monitor for devices connected behind it requesting access to the ROM address
space. This allows the SPECTRA interface to be fitted with a ROM containing a modified

Chapter 2

14

version of Spectrum BASIC and for devices that were designed to supplement or interrupt
the Spectrum’s BASIC ROM to be connected behind it and to operate on the modified
version instead, e.g. Multiface, Centronics printer interface. When used in this configuration,
the SPECTRA interface should ideally be connected immediately behind the Spectrum, but
this may not always be possible, e.g. when a ZX Interface 1 is also connected. In such a
case, the ZX Interface 1 would not be able to intercept the ROM fitted on the SPECTRA
interface and so its extended BASIC commands would not be available.

Configuration switches

The SPECTRA interface contains 6 switches that are used to enable / disable the various
facilities it provides. The configuration switches are numbered 1 to 6 and perform the
following functions:

1. Enables sound output through the television’s speaker(s).

2. Enables an onboard ROM to override the Spectrum’s ROM.

3. Enables an onboard ROM or ROM cartridge to extend the Spectrum’s ROM.

4. Enables the RS232 socket.

5. Enables the Kempston joystick socket.

6. Enables the new display modes.

A facility is disabled when its control switch is set to the off position (the slider pushed to
the left), and enabled when set to the on position (the slider pushed to the right). The use of
each switch is described in the chapter that corresponds to the facility it controls. When
operating the switches, avoid placing pressure downwards as this can damage them and
ultimately prevent them from working reliably.

CHAPTER 3

Chapter 3

CHAPTER

Chapter 3

17

SCART connection
The SCART socket provided by the SPECTRA interface connects to a television using a
standard SCART cable. It outputs a RGB signal to produce a high quality picture, and
allows the Spectrum’s sound to be played through the television’s speaker(s). It also
provides the necessary control voltages required to instruct the television to automatically
select the RGB signal of the SCART socket.

The majority of commercially available SCART cables will be suitable. Alternatively, it is
possible to construct your own lead. The diagram below shows the pin-out of the SCART
socket provided by the SPECTRA interface.

Screen

Video out

Video ground

Red video

Red video ground

Green video

Green video ground

Blue video

Blue video ground

Audio out left

Audio out right

21

19

17

15

13

11

9

7

5

3

1

20

18

16

14

12

10

8

6

4

2

Video in

Blanking ground

Blanking

Not used

Not used

Not used

Function switching

Audio in left

Audio ground

Audio in right

Front view of the SPECTRA SCART socket

The wiring of a SCART cable suitable for use with the SPECTRA interface is shown on the
next page, and results in a cable that can be connected either way round. The ground
connections (pins 4, 5, 9, 13, 17 and 18) may be wired individually pin-to-pin between the
SCART plugs, or they may all be tied together and linked using a single connection. The
cable should be screened to minimise interference.

Modern televisions typically perform processing on an incoming signal to try to improve the
quality of the displayed picture, e.g. sharpening, motion smoothing, etc. However, such
processing may actually result in a worse picture from the Spectrum and so it may prove
beneficial to disable all such filters.

To enable sound output via the television’s speaker(s), configuration switch 1 must be set
to the on position.

Chapter 3

18

SCART Plug SCART Plug

Audio out right 1 1 Audio out right

Audio in right 2 2 Audio in right

Audio ground 4 4 Audio ground

Audio out left 3 3 Audio out left

Audio in left 6 6 Audio in left

Blue video ground 5 5 Blue video ground

Blue video 7 7 Blue video

Function switching 8 8 Function switching

Green video ground 9 9 Green video ground

Not used 10 10 Not used

Green video 11 11 Green video

Not used 12 12 Not used

Red video ground 13 13 Red video ground

Not used 14 14 Not used

Red video 15 15 Red video

Blanking 16 16 Blanking

Video ground 17 17 Video ground

Blanking ground 18 18 Blanking ground

Video out 19 19 Video out

Video in 20 20 Video in

Screen 21 21 Screen

Wiring of a SPECTRA compatible SCART cable

Video signal absent indicator

The SPECTRA interface uses the luminance (/Y) signal present on the Spectrum’s
expansion bus to synchronise the display it outputs from the SCART socket with the
standard TV picture generated by the Spectrum. This signal is available by default on the
majority of Spectrums, except for issue 1 and early issue 2 machines. In these issue
machines, it is taken to the expansion bus via a short wire link but this link is not always
fitted. On later builds of the issue 2 Spectrum the link was fitted as standard, and in
subsequent issue PCBs the link was removed altogether and replaced with a continuous
track. The purpose of the video signal absent indicator LED on the SPECTRA interface is to
provide a visual indication should the luminance signal not be found. Note that upon
powering up the Spectrum, the LED will light but should then switch off almost immediately.
If it stays on then it is highly probable that the Spectrum does not have the link fitted and so
one must be soldered in.

It is possible to identify an issue 1 or issue 2 Spectrum from a quick visual inspection
through the rear expansion port. If a heatsink cannot be seen spanning across the top of
the expansion bus then the Spectrum is an issue 1 or issue 2 machine. If there is a
daughter board spanning across the expansion bus, then the Spectrum is an issue 1 (the

Chapter 3

19

daughter board was used to expand the computer from 16K to 48K, whereas in all later
issues the additional RAM was housed directly onboard the main PCB). If a daughter board
is not visible but three thick tracks with about a dozen thinner tracks beyond them running
behind the length of the expansion bus can be seen then the Spectrum is an issue 1 (all
subsequent models have ICs present here instead).

The location to fit the wire link inside an issue 1 Spectrum is shown in the following
photograph:

Luminance wire link position in issue 1 Spectrum

The location to fit the wire link inside an issue 2 Spectrum is shown in the following
photograph:

Luminance wire link position in issue 2 Spectrum

In both cases, the wire link should be fitted between the two holes marked with a white line
and labelled ‘Y’.

Fit wire
link here

Fit wire
link here

CHAPTER 4

Chapter 4

CHAPTER

Chapter 4

23

New display modes
Whereas the Spectrum only supports a single limited colour display format, the SPECTRA
interface provides support for an additional 31 display formats. These allow up to 64 unique
colours to be shown simultaneously, and at a variety of colour resolutions up to eight times
higher in the vertical direction and up to two times higher in the horizontal direction than
the standard Spectrum display. The additional colours may also be applied to the border
area, and the interface includes support for multiple screens (similar in concept to the dual
screen mechanism introduced on the Spectrum 128). These new display modes are
achieved without the need for any non-standard internal modifications to the Spectrum.

The new display modes concentrate on the colour aspect of the screen because it is the
colour abilities of the Spectrum that are arguably in most need of enhancement. This is due
to the design Sinclair used that allowed them to create a computer that was capable of
producing a ‘full colour’ screen using less than 7K of RAM. This feat was achieved by
cleverly superimposing a coarse colour grid (the attributes file) on top of a finer pixel grid
(the display file). This dramatically reduced the amount of RAM required but resulted in the
smallest colour entity covering an area of 8 by 8 pixels, causing the infamous colour clash
effect seen in many Spectrum games. A design that would have allowed each pixel to be
individually set to any of the 8 basic colours would have required 18K of RAM, which is 2K
more than the total memory initially shipped with the Spectrum!

To understand the remainder of this chapter, it is useful to establish some terminology to
describe the structure of a screen display. The active portion of the Spectrum’s display
consists of 256 pixels in the horizontal direction and 192 pixels in the vertical direction. The
horizontal pixels are grouped into blocks of 8 to form 32 columns. The vertical pixels are
also grouped into blocks of 8 and form 24 rows. The Spectrum’s display file operates at the
pixel level whereas its attributes file operates at the row and column level. Each byte
position in the attributes file is referred to as a cell.

The SPECTRA interface provides support for display modes with attribute heights of 1, 2, 4
and 8 pixels, and widths of 4 and 8 pixels. The height modes are referred to as single line,
dual line, quad line, and row and yield vertical colour resolutions of 192, 96, 48 and 24
attributes respectively. The width modes are referred to as half cell and full cell and yield
horizontal colour resolutions of 64 and 32 attributes respectively. A cell can therefore hold
information for either a single attribute (full cell mode) or two attributes (half cell mode). In all
display modes the display file resolution remains at 256 x 192 pixels. When referring to just
those aspects of the display mode that affect the size and colour range of the attributes file,
the term attribute mode is used. The choice of different attribute modes allows a trade-off
between the number of colours, colour resolution and the memory used for the display
information.

Chapter 4

24

The range of available attribute modes is summarised in the tables below.

Full cell mode Number of attributes (horizontal x vertical)

Colouring supported
32 x 24
(row)

32 x 48
(quad)

32 x 96
(dual)

32 x 192
(single)

8 ink, 8 paper, bright, flash    

8 ink, 8 paper, independent bright and flash    1

64 ink, 2 paper, flash    

64 ink, 64 paper, independent flash    1

Half cell mode Number of attributes (horizontal x vertical)

Colouring supported
64 x 24
(row)

64 x 48
(quad)

64 x 96
(dual)

64 x 192
(single)

8 ink, 1 paper, bright, flash    

8 ink, 8 paper, independent bright and flash    
1

2 or 64 ink, 1 paper, flash    

64 ink, 1 paper, independent flash    1

Summary of available attribute modes

Note that it is not possible to produce a full display with an attributes file resolution of
32 x 192 or 64 x 192 for those modes that support independent bright and flash for the ink
and paper colours. This is because these modes would require 2K more RAM than is
available for use by the attributes file. So instead, a composite display is produced that
consists of two areas of different resolutions. The details of this hybrid display format and
why there is a limit to the size of the attributes file are described later in this chapter.

The new display modes are only available when enabled by setting configuration switch 6
to the on position.

RGB picture generation

The most obvious approach to generating a RGB picture is to try and decode the YUV
colour difference signals available from the Spectrum’s expansion bus. However, these
signals are subject to so much electrical noise that it is impossible to reliably identify all
shades of colour produced by the Spectrum. A solution which bypasses the noise is
therefore required.

The Spectrum stores its picture display information at the beginning of the lower 16K RAM
bank. The SPECTRA interface listens to all writes to this RAM bank and keeps a copy of the
data in its own onboard RAM. It then uses this copy to independently generate a TV picture

1 Due to limited memory availability, this is a hybrid mode consisting of two regions of different line heights.

Chapter 4

25

that is identical to the one produced by the Spectrum. By constructing the TV picture
directly from raw display bytes, the issue of electrical noise is completely circumvented.

For the technique to work, the generated picture must be in perfect synchronisation with
the standard TV picture to ensure that the SPECTRA interface only reads from its display
RAM at the same moments that the ULA reads from the Spectrum’s internal display
memory. This then avoids the need for the SPECTRA interface to handle contention
conditions with the CPU since the ULA will already be performing this task. To achieve
synchronisation, the SPECTRA interface aligns its display generation with the interrupt (/INT)
and luminance (/Y) signals exposed on the Spectrum’s expansion bus, which allow the
start of each TV frame and the start of each scan line within a frame to be determined. If the
luminance signal is not active on the expansion bus then the SPECTRA interface cannot
synchronise with the standard TV picture and so will not attempt to generate a display
(resulting in a blank screen). This condition is detected and reported to the user using the
video signal absent indicator LED, as described in Chapter 3.

The SPECTRA interface controls the operation of fetching raw display bytes from its RAM
and processing them to generate the TV picture. However, it does not have to interpret the
bytes in the same manner that the Spectrum interprets those from its display RAM. Further,
since a complete copy of the lower 16K RAM bank is available, the SPECTRA interface may
interpret as much of this RAM as it wishes when constructing the TV display. This forms the
basis of how the new display modes are achieved.

A consequence of the shadowing approach used by the SPECTRA interface is that it limits
the memory available for the new display modes to 16K, since only this amount is
contended with the ULA. Of the 16K, the display file always occupies 6K and so the
maximum size available for the attributes file is 10K. This is why the SPECTRA interface
cannot support a full display with an attributes file resolution of 32 x 192 or 64 x 192 for
those modes that support independent bright and flash for the ink and paper colours.
Although it is theoretically possible to use more of the 16K to create a higher pixel
resolution display (albeit at the expense of reducing the available range of colours and the
colour resolution), it was decided to only target the colour deficiencies of the Spectrum in
this version of the SPECTRA interface.

Note that there is actually 32K of RAM onboard the SPECTRA interface, which is divided
into two banks of 16K. Only one of these banks is ever shadowing the Spectrum’s lower
16K RAM bank, as explained later in this chapter.

The SPECTRA interface generates its TV picture using a similar process to that used by the
Spectrum’s ULA, although it includes additional logic to implement the extra display modes.
For a comprehensive description of how the Spectrum generates its TV picture, refer to
The ZX Spectrum ULA book [1].

The majority of the new attribute modes can only practically be accessed using machine
code but a few can be controlled directly from BASIC and these are described later in this
chapter. The ROM paging mechanism provided by the SPECTRA interface opens up the

Chapter 4

26

possibility to extend Spectrum BASIC with support for most of the new attribute modes, and
this is explored further in Chapter 7.

Display mode register

The new display modes are selected using an 8-bit register accessed through input /

output (I/O) port $7FDF (where $ denotes the number is in hexadecimal). This register is
only accessible when the new display modes have been enabled by setting configuration
switch 6 to the on position. When enabled, the active display mode is selected by writing to
the output port. The port can also be read back, which is useful since it provides a means
for a program to determine whether the new display modes functionality is available (the
value read back should match the mode previously selected).

The display mode register is structured as follows:

7 6 5 4 3 2 1 0

Line height:

00=Row, 01=Quad, 10=Dual, 11=Single

0=Basic colours, 1=Extra colours

0=Single byte colour, 1=Double byte colour

0=Standard border, 1=Enhanced border

0=Display bank 0, 1=Display bank 1

0=Shadow bank 0, 1=Shadow bank 1

0=Full cell, 1=Half cell

Each option can be combined with any of the others to form a large range of different
display modes.

The line height bits are used to select how many pixels form the height of a line, either
single line (1 pixel), dual line (2 pixels), quad line (4 pixels) or row (8 pixels).

The basic / extra colours bit selects between the conventional range of 15 colours
provided by the Spectrum and a larger palette of 64 colours.

The single / double byte colour bit selects whether the colour for each attribute position is
specified using single bytes or with two bytes. The interpretation of the byte(s) depends
upon the basic / extra colours bit and the full / half cell bit, and determines whether the
basic palette of 15 colours is available or the enhanced palette of 64 colours.

The standard / enhanced border bit selects between the conventional border functionality
offered by the Spectrum and new functionality that allows additional colours to be
displayed, including the ability to flash the border.

Chapter 4

27

The display bank 0 / 1 bit is used to specify which half of the 32K RAM fitted onboard the
SPECTRA interface contains the screen information that will be fetched when generating
the TV picture. This facility can be used to store a display screen and then switch back to it
when desired. When used with the shadow bank 0 / 1 bit, a double buffer mechanism is
achieved (as described below).

The shadow bank 0 / 1 bit is used to select which half of the 32K RAM fitted onboard the
SPECTRA interface will shadow the Spectrum’s lower 16K RAM. When used with the
display bank 0 / 1 bit, a double buffer mechanism is achieved which allows a program to
be constructing a screen image in the shadow bank while the SPECTRA interface is
outputting the screen information from the display bank. Once construction of the image
has been completed, the roles of the shadow and display banks can be swapped over,
thereby producing an instantaneous update on the television without any flicker.

The full / half cell bit selects between attributes of 8 pixels wide and 4 pixels wide. The
colour byte(s) read in for a cell (as defined by the single / double byte colour bit) are
interpreted differently for half cell mode than they are for full cell mode. The state of the
basic / extra colours bit determines whether the basic palette of 15 colours or larger
palette of 64 colours is used.

Writing to the display mode register causes an immediate switch to the new configuration.
This can result in a visible flicker should the change occur midway through a TV frame.
Therefore, it may be desirable to wait until an interrupt occurs before switching to the new
mode since this ensures that the change happens prior to the top border being generated.
The immediate switch of display modes opens up the possibility to force the construction
of a hybrid screen by timing the exact moment that transitions occur between modes.

Note that the standard display mode is always reverted to whenever the reset button is
pressed or when configuration switch 6 is set to the off position. When either condition
happens, the display mode register is loaded with a value of $00 thereby selecting
configuration: row mode, display bank 0, shadow bank 0, standard border, basic colours,
single byte colour and full cell mode.

Display memory organisation

The standard Spectrum screen memory has the pixel display file located at addresses
$4000 to $57FF, and the attributes file located at addresses $5800 to $5AFF. The ordering
of the lines within the display file does not follow a logical progression down the screen but
instead follows the distinctive sequence often seen when a loading screen is being read in
from cassette. This sequence splits the display into 3 areas of 8 rows, with each area
ordered by the pixel line positions within the rows. In contrast, the attributes file is ordered
in a logical progression starting from the top row. To understand why the display file uses
such an apparently odd layout requires an examination of how each memory location
within it is addressed. The diagram that follows shows the addressing schemes for the
standard display and attribute files.

Chapter 4

28

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Display file: 0 1 0 A1 A0 L2 L1 L0 R2 R1 R0 C4 C3 C2 C1 C0

Attributes file: 0 1 0 1 1 0 A1 A0 R2 R1 R0 C4 C3 C2 C1 C0

The area number is specified by bits An, the row number within an area by bits Rn, the
pixel line number within a row by bits Ln and the column number by bits Cn. It can be seen
that the lower 8 bits are identical between the display file and the attributes file, and this
approach was used since it simplified the picture generation logic inside the ULA. Note that
the A0 and A1 bits never both hold a value of 1, and thus the display file and the attributes
file can never overlap.

The new attribute modes provided by the SPECTRA interface use an addressing scheme
for the display file that is identical to that used by the standard Spectrum screen. However,
the addressing schemes used for the various display mode attribute files are different. A
relationship between them and the display file can be seen by examining address lines A8
to A12, which shift by one bit position to the left each time the vertical colour resolution is
doubled. It becomes clear that although the standard attributes file (row mode) visually
appears to be a logical progression, it can actually be thought of as an extreme case of the
‘odd’ sequence seen in the display file. The addressing schemes for the new attribute
modes are shown below.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Display file: 0 1 0 A1 A0 L2 L1 L0 R2 R1 R0 C4 C3 C2 C1 C0

Row mode: 0 1 0 1 1 D A1 A0 R2 R1 R0 C4 C3 C2 C1 C0

Quad line mode: 0 1 1 0 D A1 A0 L2 R2 R1 R0 C4 C3 C2 C1 C0

Dual line mode: 0 1 1 D A1 A0 L2 L1 R2 R1 R0 C4 C3 C2 C1 C0

Single line mode - basic / extra colours using single byte colour:

 0 1 1 A1 A0 L2 L1 L0 R2 R1 R0 C4 C3 C2 C1 C0

Single line mode - basic / extra colours using double byte colour:

Single line area: 0 1 1 D A0 L2 L1 L0 R2 R1 R0 C4 C3 C2 C1 C0

Dual line area: 0 1 0 1 1 D L2 L1 R2 R1 R0 C4 C3 C2 C1 C0

Chapter 4

29

The bit denoted by D applies to double byte colour and its action depends upon the full /

half cell bit of the display mode register. In full cell mode and in half cell mode using basic
colours, it selects between the ink bytes (when D is 0) and the paper bytes (when D is 1). In
half cell mode using extra colours, it selects between the ink bytes for the right half of each
cell (when D is 0) and the ink bytes for the left half of each cell (when D is 1). In single byte
colour mode, D is always 0.

Single line mode using double byte colour produces a composite screen consisting of two
areas of different line resolutions – 128 single pixel height lines followed by 32 double pixel
height lines. Both areas support the same colour palette, as specified by the basic / extra

colours bit of the display mode register.

The size of the attributes file is dictated only by the line height and single / double byte

colour bits of the display mode register. The memory usage for each attribute mode is
shown in the following table.

Line mode Single byte colour Double byte colour

Row $5800-$5AFF

[$0300]

$5800-$5AFF
$5C00-$5EFF

[$0600]

Quad $6000-$65FF

[$0600]

$6000-$65FF
$6800-$6DFF

[$0C00]

Dual $6000-$6BFF

[$0C00]

$6000-$6BFF
$7000-$7BFF

[$1800]

Single $6000-$77FF
[$1800]

$5800-$7FFF
[$2800]

Summary of attribute mode memory usage

In double byte colour mode, the attributes file consists of two distinct areas. The first
generally holds the ink bytes for each cell and the second holds the paper bytes for each
cell (the exception to this is half cell mode with extra colours and using double byte colour,
and the format it uses is described later in this chapter). This partitioning comes about
because of the addressing schemes used, but has the advantage that it becomes easy to
find the corresponding paper byte for an ink byte, and vice versa. It also makes it easy for a
program to operate only on the ink or paper bytes instead of having to manipulate both,
and this could be exploited to achieve improved performance.

As previously stated, single line mode using double byte colour produces a display that
consists of two different line heights. The attributes file spans locations $5800 to $7FFF, of
which the single line data occupies $6000 to $7FFF and the dual line data occupies $5800
to $5FFF. Both areas are divided in two, with the first half defining the ink colours and the
second half defining the paper colours.

Chapter 4

30

The total number of bytes used by each attribute mode is shown in the table by the
number in square brackets, and excludes any unused region in between the two attribute
areas. This region, if it exists, is available for use by a program.

In half cell mode with extra colours and using double byte colour, the first half of the
attributes file holds the colour for the right half of each cell and the second half of the
attributes file holds the colour for the left half of each cell.

Colour byte formats

The SPECTRA interface drives its SCART socket using 6 colour lines, two for each of the
red, green and blue channels. This yields 4 levels for each channel, and they correspond to
approximately 0%, 33%, 66% and 100% of full brightness. When the channels are
combined, a total of 64 different colours can be produced. Of these 15 match the basic
range of colours achievable on the standard Spectrum display. It is the state of the basic /

extra colours bit of the display mode register that selects whether a basic colour palette or
the larger 64 colour palette is used.

The basic colour palette, including each colour’s index number and bright variation, is
shown below.

0 1 2 3 4 5 6 7

Basic colour palette

The 64 colour palette, including each colour’s index number, is shown below.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

64 colour palette

Chapter 4

31

The state of the single / double byte colour bit of the display mode register determines
whether the ink and paper colour values for an attribute cell are held in just one byte or
separately in two. The interpretation of the attribute byte(s) also depends upon the state of
the full / half cell bit of the display mode register.

A shorthand notation can be used to specify each attribute mode and consists of the
attribute pixel size (width x height) followed by two letters that indicate the colour mode. The
attribute width indicates full cell (8 pixels) or half cell (4 pixels) mode, and the attribute
height indicates row (8 pixels), quad line (4 pixels), dual line (2 pixels) or single line (1 pixel)
mode. The colour mode letters indicate single (S) or double (D) byte colour, and basic (B) or
extra (E) colours. The range of attribute modes, along with the interpretation of their attribute
byte(s), are summarised below. Each mode is described afterwards in further detail.

Attribute mode

Attribute cell byte 2 Attribute cell byte 1

8x8
SB 8x4

SB 8x2
SB 8x1

SB

 F B Pg Pr Pb Ig Ir Ib

8x8
DB 8x4

DB 8x2
DB 8x1

DB

 FP BP – – – Pg Pr Pb FI BI – – – Ig Ir Ib

8x8
SE 8x4

SE 8x2
SE 8x1

SE

 F P Ig Ig Ir Ir Ib Ib

8x8
DE 8x4

DE 8x2
DE 8x1

DE

 FP – Pg Pg Pr Pr Pb Pb FI – Ig Ig Ir Ir Ib Ib

4x8
SB 4x4

SB 4x2
SB 4x1

SB

 F B ILg ILr ILb IRg IRr IRb

4x8
DB 4x4

DB 4x2
DB 4x1

DB

 FP BP PLg PLr PLb PRg PRr PRb FI BI ILg ILr ILb IRg IRr IRb

4x8
SE 4x4

SE 4x2
SE 4x1

SE

 F IL IRg IRg IRr IRr IRb IRb

4x8
DE 4x4

DE 4x2
DE 4x1

DE

 FP PL
* ILg ILg ILr ILr ILb ILb FI PR

* IRg IRg IRr IRr IRb IRb

The purpose of each bit in the attribute bytes is denoted by labels F, B, I or P to indicate
whether it defines flash, bright, ink or paper respectively. Subscripts of I and P indicate that
the bit applies only to the ink pixels or only to the paper pixels respectively. Subscripts of L
and R indicate that the bit applies only to the left half or only to the right half of the attribute
cell respectively. Subscripts of g, r and b indicate that the bit specifies the green, red and
blue components of the colour respectively. Where two bits appear within an attribute byte
for a single colour component, the right most bit defines the least significant bit of the
colour. A ‘–’ indicates that the bit is available for use by a program. An ‘*’ indicates the
intended purpose of the bit but due to a lack of resources the SPECTRA interface is unable
to support this functionality. In such cases, the bit should always be set to 0 to ensure
forwards compatibility with any future version of the SPECTRA interface.

Chapter 4

32

Full cell

In basic colours mode using single byte colour, each attribute cell is formatted in the
standard Spectrum manner as follows:

7 6 5 4 3 2 1 0

Ink, ordered as GRB

Paper, ordered as GRB

1=Bright

1=Flash

The ink bits define the colour used for those pixels that are set in the display file and the
paper bits define the colour used for those pixels that are reset (where the letters G, R and
B denote green, red and blue respectively). Both the ink and paper values are composed of
3 bits, yielding a range of 8 colours for each. When coupled with the bright bit a total of 16
different colour values are produced, although only 15 of these are unique since black and
bright black display the same. When the flash bit is set, the paper and ink colours swap
over at a fixed frequency of 1.565 Hz.

In basic colours mode using double byte colour, the first attribute byte defines the ink
colour and the second attribute byte defines the paper colour. Both bytes are formatted as
follows:

7 6 5 4 3 2 1 0

Colour, ordered as GRB

Not used (available for program use)

1=Bright

1=Flash

The format encodes the ink and paper using 3 bits each, yielding both a range of 8 colours.
The bright bit in each byte extends these totals to 16 different colour values, although only
15 of these are unique since black and bright black display the same.

With the flash bit in both attribute bytes set, the ink and paper colours swap over at a fixed
frequency of 1.565 Hz and replicate the flash mode of the standard Spectrum display.
However, if only the ink attribute byte’s flash bit is set then just the ink coloured pixels swap
between the ink colour and the paper colour, and if only the paper attribute byte’s flash bit
is set then just the paper colour pixels swap between the paper colour and the ink colour.

Chapter 4

33

Note that the not used bits of each colour byte are available for use as storage by a
program. They could, for example, be used in a maze game to hold flags that indicate
which cells contain walls and of what type. If these bits are not used by a program then it is
recommended that they always be set to 0.

In extra colours mode using single byte colour, each attribute cell is formatted as follows:

7 6 5 4 3 2 1 0

Ink (blue), ordered as B1B0

Ink (red), ordered as R1R0

Ink (green), ordered as G1G0

Paper (0=Black, 1=White)

1=Flash

The format supports 64 ink colours but only 2 paper colours (black and white). When the
flash bit is set, the ink and paper colours swap at a fixed frequency of 1.565 Hz.

In extra colours mode using double byte colour, the first attribute cell byte specifies the ink
colour and the second attribute cell byte defines the paper colour. Both bytes are formatted
as follows:

7 6 5 4 3 2 1 0

Blue, ordered as B1B0

Red, ordered as R1R0

Green, ordered as G1G0

Not used (available for program use)

1=Flash

The format supports 64 colours for the ink and 64 colours for the paper, resulting in a total
of 64 x 64 = 4096 different combinations. When the flash bits are taken into account, the
number of combinations rises to 4096 x 2 x 2 = 16384.

With the flash bit in both attribute cell bytes set, the ink and paper colours swap over at a
fixed frequency of 1.565 Hz. However, if only the ink attribute byte’s flash bit is set then just
the ink coloured pixels swap between the ink colour and the paper colour, and if only the
paper attribute byte’s flash bit is set then just the paper colour pixels swap between the
paper colour and the ink colour.

Chapter 4

34

Note that the not used bit of each attribute byte is available for use as storage by a
program. It is recommended that these bits are always be set to 0 if not used.

Half cell

In basic colours mode using single byte colour, the ink colour for the left and right halves of
each cell can be set independently to any of the basic 8 colours. The paper colour is
always black. The format of each attribute cell is as follows:

7 6 5 4 3 2 1 0

Right half ink, ordered as GRB

Left half ink, ordered as GRB

1=Bright

1=Flash

The bright bit applies to the full cell and allows a total of 16 different colour values to be
produced, although only 15 of these are unique since black and bright black display the
same. The flash bit applies to the full cell and when set causes the ink colours to swap
over with the paper colour at a fixed frequency of 1.565 Hz.

In basic colours mode using double byte colour, the first attribute cell byte defines the ink
colour for the two halves of the cell and the second attribute cell byte defines the paper
colour for the two halves of the cell. Both bytes are formatted as follows:

7 6 5 4 3 2 1 0

Right half colour, ordered as GRB

Left half colour, ordered as GRB

1=Bright

1=Flash

The format encodes the left ink, the right ink, the left paper and the right paper using 3 bits,
yielding each a range of 8 colours. Both bytes include a bright bit, allowing a total of 16
different colour values to be produced for the ink and 16 for the paper, although in each
instance only 15 of these are unique since black and bright black display the same. The
brightness of the left ink and right ink will always be the same, and likewise the brightness
of the left paper and right paper will always be the same.

With the flash bit in both attribute cell bytes set, all ink and paper colours in the cell swap
over at a fixed frequency of 1.565 Hz. However, if only the ink attribute byte’s flash bit is set
then just the ink coloured pixels in the cell swap between the ink colour and the paper

Chapter 4

35

colour, and if only the paper attribute byte’s flash bit is set then just the paper colour pixels
in the cell swap between the paper colour and the ink colour.

In extra colours mode using single byte colour, each attribute cell is formatted as follows:

7 6 5 4 3 2 1 0

Right half ink (blue), ordered as B1B0

Right half ink (red), ordered as R1R0

Right half ink (green), ordered as G1G0

Left half ink (0=Black, 1=White)

1=Flash

The format supports 64 ink colours for the right half of the attribute cell but only 2 ink
colours for the left half of the attribute cell (black and white). The paper colour is always
black. When the flash bit is set, the ink and paper colours swap over at a fixed frequency of
1.565 Hz. This mode is probably of limited use due to the left half of each cell only
supporting an ink colour of black or white.

In extra colours mode using double byte colour, the first attribute cell byte defines the ink
colour for the right half of the cell and the second attribute cell byte defines the ink colour
for the left half of the cell. Both bytes are formatted as follows:

7 6 5 4 3 2 1 0

Ink (blue), ordered as B1B0

Ink (red), ordered as R1R0

Ink (green), ordered as G1G0

Reserved for ‘paper’ (always set to 0)

1=Flash

The format supports 64 ink colours for both the left and right halves of the attribute cell.
Although the format includes a paper bit to allow support for two background colours
(0=black and 1=white), this is not supported by the SPECTRA interface due to a lack of
resources and so only a paper colour of black is available. The bit is therefore marked as
reserved and should always be set to 0 to ensure compatibility with any future version of
the SPECTRA interface.

With the flash bit in both attribute cell bytes set, all ink and paper colours in the cell swap
over at a fixed frequency of 1.565 Hz. However, if only the first attribute byte’s flash bit is set
then just the right half ink coloured pixels swap between the ink colour and the paper

Chapter 4

36

colour, and if only the second attribute byte’s flash bit is set then just the left half ink
coloured pixels swap between the ink colour and the paper colour.

Standard / enhanced border

The colour of the border in the standard screen display produced by the Spectrum is set by
writing to output port $FE, and supports just 8 colours. The SPECTRA interface extends the
number of supported border colours to 64 by re-interpreting the byte written to output port
$FE when the standard / enhanced border bit of the display mode register is set.

In standard border mode, the byte written is interpreted in the usual way as follows:

7 6 5 4 3 2 1 0

Border colour, ordered as GRB

MIC output

Speaker output

Not used

The mode supports just the basic set of 8 colours available from the Spectrum.

In enhanced border mode, it is the state of the basic / extra colours bit in the display mode
register that determines how the byte written to output port $FE is interpreted.

In enhanced border mode using basic colours, the byte written is interpreted as follows:

7 6 5 4 3 2 1 0

Border colour, ordered as GRB

MIC output

Speaker output

0=Flash with black, 1=Flash with white

1=Bright

1=Flash

When the flash bit is set, the border colour alternates at a fixed frequency of 1.565 Hz
between the colour specified by bits 0 to 2 and the colour specified by bit 5 (black if reset,
white if set).

The bright bit is used to increase the intensity of the colour specified by bits 0 to 2,
resulting in 16 possible colour values (although only 15 of these are unique since black
and bright black display the same). It also increases the intensity of the flash colour

Chapter 4

37

specified by bit 5, resulting in 4 possible colour values (although only 3 of these are unique
since black and bright black display the same).

Note that the MIC output and speaker output bits cannot be re-interpreted since they are
used by the Spectrum’s hardware to control the cassette sockets and the loudspeaker.

In enhanced border mode using extra colours, the byte written to output port $FE is
interpreted as follows:

7 6 5 4 3 2 1 0

Border colour bits, ordered as G1R1B1

MIC output

Speaker output

Border colour bits, ordered as G0R0B0

The two sets of border colour bits are combined to form a 6 bit value, giving a range of 64
unique colours. They are split into high and low order bits to provide a degree of
backwards compatibility with standard border mode. Note that there is no facility in this
mode to flash the border.

Screen bank 0 / 1

As previously described, the SPECTRA interface contains onboard RAM and uses it to
shadow the Spectrum’s lower 16K RAM bank. The onboard RAM has a capacity of 32K and
so is divided into two banks of 16K. The screen bank 0 / 1 bit selects which bank is read
by the SPECTRA interface when generating the TV picture.

The screen bank facility can effectively increase the Spectrum’s available memory by
offloading a display from main memory into the inactive screen bank. This display can then
be switched to as and when needed. For example, the loading screen for a game could be
stored and then re-shown each time the game is over.

The screen bank 0 / 1 bit operates with all available attribute modes. However, it does not
affect the border area since this is not stored in the Spectrum’s lower 16K RAM bank.

Shadow bank 0 / 1

The shadow bank 0 / 1 bit selects which half of the 32K RAM onboard the SPECTRA
interface is shadowing writes to the Spectrum’s lower 16K RAM bank.

When the shadow bank and the screen bank point to the same 16K RAM bank, changes
to the display and attribute files are immediately reflected to the television.

When the shadow bank and the screen bank point at different 16K RAM banks, a double
buffer mechanism is achieved. This allows a program to be constructing one display while
another is being shown. Once all drawing has been completed, the roles of the screens

Chapter 4

38

can be swapped over to achieve a smooth transition to the new display without any visible
appearance of the construction process.

The shadow bank 0 / 1 bit operates with all available attribute modes. However, it does not
shadow writes to the border area since this is not stored in the Spectrum’s lower 16K RAM
bank.

Display mode compatibility

The new display modes provided by the SPECTRA interface are controlled through a
specific I/O port, but there is the possibility that this port address might also be used by
another peripheral. This could prevent the display mode register from being read, or could
cause the other device to become activated when a write to the display mode register
occurs. Should such a conflict be encountered, then either the peripheral must be
disconnected to allow the new display modes to be used, or the new display modes must
be disabled to allow the peripheral to operate correctly.

The new display modes can be disabled by setting configuration switch 6 to the off
position. This causes the SPECTRA interface to revert to the standard Spectrum display
mode and prevents further accesses to the display mode register, thus ensuring full I/O
compatibility with ‘conflicting’ hardware. Further details about the compatibility of the
SPECTRA interface with existing hardware and software can be found in Appendix B.

Irrespective of the state of configuration switch 6, the SPECTRA interface will always attempt
to output a picture through the SCART socket.

Display mode availability

A program can test whether the new display modes are available by writing a value to the
display mode register and then attempting to read it back. If the values do not match then
the new display modes are not available. A value of $FF should be avoided since this is the
default value returned if the display modes are not enabled or if a SPECTRA interface is not
connected.

Should the value read back be different to that expected (but not $FF) then another device
must have responded to the I/O port read, making it impossible to identify whether the new
display modes are available. Note that such a device could also respond with a value of
$FF, thereby giving the impression that no device responded to the I/O port read.

It is also possible that a conflicting device just happens to respond with the expected
value, leading to a false detection of the display modes functionality. The chances of this
occurring can be significantly reduced by performing the test several times using a variety
of different values.

Note that the display mode register uses an I/O port that is contended with the ULA, i.e. it
has an address between $4000 and $7FFF. This means that the reading of the I/O port will
be suspended whilst the ULA is fetching video data from the Spectrum’s RAM and will only
continue once the ULA has finished its read. As a result, if the display mode register is read
when a SPECTRA interface is not connected (or the display modes have been disabled)

Chapter 4

39

then a value of $FF will always be returned. This would not necessarily have been the case
had a non-contended I/O port been used for the display mode register since then the I/O
read would not get suspended while the ULA performs a memory read. Instead of a value
of $FF being read (the state of an idle data bus), the value returned would be that of the
display byte being fetched by the ULA. It would only have proved possible to reliably read
the display mode register by waiting until an interrupt had occurred since this happens
prior to the top border being generated. Using a non-contended I/O port would have made
the process of reading the display mode register slower and more involved.

Display mode control from BASIC

The majority of the new attribute modes can only practically be accessed using machine
code, but those that are row based and use single byte colour can be controlled directly
from BASIC. In addition, the enhanced border and multiple screen facilities may also be
controlled from BASIC. However, it is possible to add support for other attribute modes by
extending BASIC using the ROM facilities provided by the SPECTRA interface and this is
explored in Chapter 7.

The new display modes that can be directly controlled using standard BASIC are:

 Full cell, row, extra colours, single byte colour mode (8x8 SE).

 Half cell, row, basic colours, single byte colour mode (4x8 SB).

 Half cell, row, extra colours, single byte colour mode (4x8 SE).

 Enhanced border (when in 8x8 SB, 8x8 SE, 4x8 SB or 4x8 SE).

 Multiple screen mechanism (when in 8x8 SB, 8x8 SE, 4x8 SB or 4x8 SE).

The following program demonstrates full cell, row, extra colours, single byte colour mode
(8x8 SE) by displaying all colour combinations available:

 10 OUT 32735,4

 20 DEF FN p(c)=INT (c/8):

 DEF FN i(c)=c-8*FN p(c)

 30 FOR f=0 TO 1

 40 FOR p=0 TO 1

 50 FOR n=0 TO 1

 60 FOR i=0 TO 63

 70 PRINT FLASH f; INVERSE n; BRIGHT p;

PAPER FN p(i); INK FN i(i);"a";

 80 NEXT i

 90 NEXT n

 100 NEXT p

 110 NEXT f

The ink pixels can be set to any of 64 colours and the paper pixels can be set to black and
white only. The program sets the ink pixel colour through the combined use of BASIC
commands INK and PAPER, with DEF FN statements being used to simplify the process of
translating the 64 palette colour into values to pass to the INK and PAPER commands. The
paper pixel colour is set through the use of the BASIC command BRIGHT. The BASIC
commands FLASH and INVERSE operate as usual.

Chapter 4

40

The following program demonstrates half cell, row, basic colours, single byte colour mode
(4x8 SB) by displaying all colour combinations available:

 10 OUT 32735,128

 20 FOR n=0 TO 1

 30 FOR p=0 TO 7

 40 FOR f=0 TO 1

 50 FOR b=0 TO 1

 60 FOR i=0 TO 7

 70 PRINT FLASH f; BRIGHT b; INVERSE n;

PAPER p; INK i;"a";

 80 NEXT i

 90 NEXT b

 100 NEXT f

 110 NEXT p

 120 NEXT n

The ink pixels of the left and right halves of each cell can be set to any of the basic 8
colours, with the paper pixels always being set to black. The program sets the ink pixel
colour through the combined use of BASIC commands INK and PAPER, with the BASIC
commands FLASH, BRIGHT and INVERSE operating as usual.

The following program demonstrates half cell, row, extra colours, single byte colour mode
(4x8 SE) by displaying all colour combinations available:

 10 OUT 32735,128+4

 20 DEF FN p(c)=INT (c/8):

 DEF FN i(c)=c-8*FN p(c)

 30 FOR f=0 TO 1

 40 FOR p=0 TO 1

 50 FOR n=0 TO 1

 60 FOR i=0 TO 63

 70 PRINT FLASH f; BRIGHT p; INVERSE n;

PAPER FN p(i); INK FN i(i);"a";

 80 NEXT i

 90 NEXT n

 100 NEXT p

 110 NEXT f

The ink pixels of the right half of each cell can be set to any of 64 colours but the ink pixels
of the left half of each cell can only be set to black or white. The paper pixels are always
set to black. The program sets the ink pixel colour through the combined use of BASIC
commands INK and PAPER, with DEF FN statements being used to simplify the process of
translating the 64 palette colour into values to pass to the INK and PAPER commands. The
paper pixel colour is set through the use of the BASIC command BRIGHT. The BASIC
commands FLASH and INVERSE operate as usual. This mode is probably of limited use
due to the left half of each cell only supporting an ink colour of black or white.

The enhanced border functionality can be controlled when in any of the row based attribute
modes that use single byte colour, i.e. 8x8 SB, 8x8 SE, 4x8 SB and 4x8 SE. The following
program demonstrates access to the 64 colour palette when in extra colours mode
(8x8 SE).

Chapter 4

41

 10 OUT 32735,20

 20 DEF FN p(c)=INT (c/8):

 DEF FN i(c)=c-8*FN p(c):

 DEF FN b(c)=32*FN p(c)+FN i(c)

 30 FOR c=0 TO 63

 40 OUT 254,FN b(c)

 50 PAUSE 25

 60 NEXT c

 70 GO TO 30

The program cycles through all available colours. DEF FN statements are used to simplify
the process of translating the 64 colour palette into a value to output to I/O port 254 ($FE).

The multiple screen mechanism can be controlled when in any of the row based attribute
modes that use single byte colour, i.e. 8x8 SB, 8x8 SE, 4x8 SB and 4x8 SE. It can be used to
just store a screen image for display later, or it can be used to implement a double buffer
mechanism. The following program demonstrates this latter use and displays screens of
random numbers one after the other. To see the effect of screen buffering, uncomment
lines 10 and 60. Line 10 selects screen bank 0 for display and screen bank 1 to shadow
the Spectrum's lower 16K RAM bank. Line 60 reverses this to select screen bank 1 for
display and screen bank 0 to shadow the Spectrum's lower 16K RAM bank.

 10 REM OUT 32735,64

 20 CLS

 30 FOR r=0 TO 20

 40 PRINT RND

 50 NEXT r

 60 REM OUT 32735,32

 70 CLS

 80 FOR r=0 TO 20

 90 PRINT RND

 100 NEXT r

 110 IF INKEY$="" THEN GO TO 10

 120 OUT 32735,0

With screen buffering enabled, the process of printing to the screen becomes invisible to
the user. The program still takes the same length of time to output the random numbers but
the visual result can be more pleasing to the eye. To terminate the program, hold down any
key and the program will end by reverting to the standard display mode.

It may be desirable for a program to adjust its output depending upon whether the new
display modes of the SPECTRA interface are available or not. The following program
demonstrates how this can be achieved from BASIC:

 10 OUT 32735,16

 20 PRINT "New display modes: ";

 30 IF IN 32735<>16 THEN PRINT "not ";

 40 PRINT "available"

 50 OUT 32735,0

CHAPTER 5

Chapter 5

CHAPTER

Chapter 5

45

Joystick socket
The SPECTRA interface includes a Kempston compatible joystick socket, which is the most
widely supported standard by Spectrum games. The socket provides a +5V output allowing
it to drive the auto-fire mode found on many popular joysticks. To use the joystick socket, it
must first be enabled by setting configuration switch 5 to the on position.

If a separate Kempston joystick interface or a peripheral which includes a Kempston
joystick socket is used then it is necessary to disable the one built into the SPECTRA
interface to prevent a conflict and potential damage to the hardware.

The Kempston joystick socket is read using input port 31 and returns a byte that decodes
as follows:

7 6 5 4 3 2 1 0

1=Right

1=Left

1=Down

1=Up

1=Fire

Not used (always 0)

Not used (always 0)

Not used (always 0)

Each joystick direction bit and the fire button bit is set to 1 when its corresponding function
is activated. The Kempston standard specifies that the upper 3 bits should always return 0,
although it is best not to rely on this since some 3rd party Kempston joystick interfaces do
not bother to set these bits.

The joystick socket can be read from BASIC using the IN function, as the following program
demonstrates:

10 PRINT AT 0,0;IN 31;" "

20 GOTO 10

When the joystick socket is disabled via configuration switch 5, reading the port may return
apparently random values instead of the expected value of $FF (for an idle data bus). This
is due to screen bytes appearing on the data bus as a result of the ULA reading the display
RAM during construction of the TV picture.

Chapter 5

46

The SPECTRA interface provides a standard male DE-9 joystick socket, which has the
following pin-out:

1 Up
2 Down
3 Left
4 Right
5 Not used

9 Not used
8 0V
7 +5V
6 Fire

Top view of the SPECTRA joystick socket

[Male]

CHAPTER 6

Chapter 6

CHAPTER

Chapter 6

49

RS232 socket
The RS232 socket provided by the SPECTRA interface is fully compatible with the RS232
socket available on the ZX Interface 1. This means that machine code routines intended to
directly drive the ZX Interface 1 RS232 port will operate the SPECTRA RS232 port without
the need for modification. In addition, the ROM facilities provided by the SPECTRA interface
(see Chapter 7) allow the RS232 port to be controlled directly from BASIC by extending the
Spectrum’s ROM with a copy of the ZX Interface 1 ROM. It is then possible to open text and
binary channels using standard ZX Interface 1 BASIC syntax and hence to run programs
originally written to control the ZX Interface 1 RS232 port. The RS232 socket can be used to
connect to a range of devices, e.g. a serial printer, a modem, a PC to load/save data. For
details on how to control the RS232 port using extended BASIC commands, refer to the
ZX Spectrum Microdrive and Interface 1 Manual [2].

To use the RS232 socket, it must be enabled by setting configuration switch 4 to the on
position. If a ZX Interface 1 is also connected then it is necessary to disable the RS232
socket built into the SPECTRA interface to prevent a conflict and potential damage to the
hardware.

The RS232 socket can be used to send and receive data, but not both at the same time, i.e.
only half-duplex communication is possible. This is because the process of transmitting
and receiving data is controlled completely from software. Data is sent one byte at a time,
and wrapped with framing bits. A range of different data formats are supported by RS232
but the standard introduced by the ZX Interface 1 for the Spectrum consists of a start bit, 8
data bits (least significant bit first), 2 stop bits, and with hardware handshaking used to
coordinate when data is sent or received. It is possible to use a different format but only if a
custom serial driver routine is written in machine code.

The speed at which the data bits are sent is known as the baud rate, which specifies the
maximum number of bits that can be sent per second. The highest baud rate supported by
the ZX Interface 1 ROM is 19200, which equates to a theoretical data rate of 1745 bytes per
second. However, in practice a lower rate will always be achieved since it takes time to
process the bytes that will be sent and those that are received. If a custom serial driver
routine is used then it may be possible to achieve higher baud rates.

Cable wiring

The SPECTRA interface uses a female DE-9 socket for its RS232 port, which is pin
compatible with the RS232 socket provided by the ZX Interface 1. The socket has the
pin-out shown overleaf.

Chapter 6

50

5 CTS (out)
4 DTR (in)
3 RX data (out)
2 TX data (in)
1 Not used

6 Not used
7 0V
8 Not used
9 +9V

Front view of the SPECTRA RS232 socket

A custom cable is required to connect the RS232 socket to a serial device since the socket
uses a non-standard pin arrangement. The wiring needed to connect to a serial device
(e.g. a PC) which has a male DE-9 socket or a male DB-25 socket is shown below.

SPECTRA / ZX Interface 1 Serial Device

 DE-9

Male

 DE-9

Female

DB-25

Female

TX data 2 3 2 TXD

RX data 3 2 3 RXD

0V 7 5 7 GND

DTR 4 4 20 DTR

CTS 5 8 5 CTS

+9V 9 6 6 DSR

 Screen Screen Screen

Wiring of a SPECTRA / ZX Interface 1 RS232 cable

The screen connection should be made as this will significantly improve the cable’s
resilience to interference. A typical RS232 cable may be several metres in length.

The cable design includes an optional filter circuit consisting of a 1k5 resistor and a 10nF
capacitor (shown enclosed by a dotted rectangle), and this might be required when using a
copy of the ZX Interface 1 ROM to transmit data from the RS232 socket. The ZX Interface 1
ROM introduces glitches at the beginning and end of every byte transmitted and these can

1k5
10nF

[Female]

Chapter 6

51

be sufficient to cause a device to occasionally misread the data. Printer leads produced for
the ZX Interface 1 would often contain this filter circuit to try and remove the glitches. The
filter circuit is suitable for transmission speeds up to 19200 baud (the highest supported by
the ZX Interface 1 ROM), but beyond this the filter circuit is likely to have a detrimental
effect.

The glitches occur as a result of the ZX Interface 1 sharing the drive circuitry for the
Network and RS232 sockets. A control register is used to select which type of socket is
active, and forces the unselected socket to output a voltage corresponding to its idle
condition, i.e. no activity. The problem arises because the Network and RS232 sockets
require opposite values in the control register in order to select their idle condition. After a
byte has been transmitted from the RS232 socket, the control register naturally ends up
containing a value representing the idle condition for RS232. Should a switch now be
made to select the Network sockets then the value in the control register would not
represent the idle condition for the Network. The ZX Interface 1 ROM always reverts to
Network mode after every byte sent out from the RS232 socket, which requires it to toggle
the control register in order to maintain the idle condition appearing at the Network sockets.
Unfortunately it toggles the control register prior to reselecting the Network, which prevents
a glitch being produced on the Network lines but introduces one on the RS232 line. When
the next byte is ready to be sent from the RS232 socket, Network mode is deselected and
so the RS232 line must be quickly placed back into its idle condition. This causes a glitch
to also appear at the beginning of every byte transmitted.

Data transmission via RS232 occurs at a slower rate than via the Network and so (in theory)
there is less likelihood that the glitches would be mistaken for real data. This is presumably
why the ZX Interface 1 ROM ensures that the glitches do not occur on the Network lines
but always on the RS232 line. The ZX Interface 1 hardware should have been designed
such that glitches were never produced, or failing this then the ZX Interface 1 ROM should
have been written so that it does not revert to Network mode after every RS232 byte
transmission but only when the Network next needs to be used.

Although the SPECTRA interface does not provide Network sockets, it does fully replicate
the functionality of the ZX Interface 1 RS232 socket and so will output glitches when driven
by a copy of the ZX Interface 1 ROM. New programs can avoid the generation of glitches
by implementing their own serial driver routine that does not deselect RS232 mode after
every byte transmitted.

When constructing a RS232 cable for use with the SPECTRA interface, it is recommended
to omit the filter circuit. It should only be necessary to include it if data transmission errors
are experienced when using a copy of the ZX Interface 1 ROM.

On a RS232 communications link, the two devices connected are referred to as the data

terminal equipment (DTE) and the data communications equipment (DCE). Normally the
DTE would be the device that requires sending / receiving of data and the DCE as the
device that accepts it or provides it, e.g. a computer would be a DTE and a printer a DCE.
The RS232 convention is to label of all signals with respect to the DTE. The ZX Interface 1

Chapter 6

52

confusingly labels its RS232 socket pins as if it were a DCE, and hence the RX data line is
used for sending data and the TX data line used for receiving data. The SPECTRA interface
adopts the ZX Interface 1 labelling scheme since it provides a functionality identical RS232
socket. Note that in RS232, TXD stands for transmit data, RXD for receive data, DTR for data

terminal ready, CTS for clear to send and DSR for data set ready.

I/O ports

The RS232 socket is software driven using I/O ports 239 and 247. The function of each bit
of these ports is shown in the following diagrams. Note that although many of the bits are
marked as ‘not used’ by the RS232 port, they are used on a ZX Interface 1 to control the
Network and Microdrives. If a custom serial driver is written in machine code then it is
important to set these ‘not used’ bits as indicated to ensure that the routines will also
operate successfully if used on a ZX Interface 1.

Output port 239 ($EF = xxx01xxx):

7 6 5 4 3 2 1 0

Comms_Out (1=RS232 output mode)

Not used by RS232 (set to 1)

Not used by RS232 (set to 1)

Not used by RS232 (set to 1)

CTS (inverted, 1=Signal to device ‘OK to send’)

Not used by RS232 (set to 1)

Not used by RS232 (set to 1)

Not used by RS232 (set to 1)

Input port 239 ($EF = xxx01xxx):

7 6 5 4 3 2 1 0

Not used by RS232

Not used by RS232

Not used by RS232

DTR (inverted, 1=Device reports ‘OK to send’)

Not used by RS232

Not used by RS232

Not used by RS232

Not used by RS232

Chapter 6

53

Output port 247 ($F7 = xxx10xxx):

7 6 5 4 3 2 1 0

RX data (inverted data bit, 0=Idle)

Not used by RS232 (set to 0)

Not used by RS232 (set to 0)

Not used by RS232 (set to 0)

Not used by RS232 (set to 0)

Not used by RS232 (set to 0)

Not used by RS232 (set to 0)

Not used by RS232 (set to 0)

Input port 247 ($F7 = xxx10xxx):

7 6 5 4 3 2 1 0

Not used by RS232

Not used by RS232

Not used by RS232

Not used by RS232

Not used by RS232

Not used by RS232

Not used by RS232

TX data (inverted data bit, 0=Idle)

RS232 operation

The RS232-C standard (which is the version of RS232 that the ZX Interface 1, and hence
the SPECTRA interface, implements) defines the voltage levels used to represent data bit
values as -3V to -15V for a logic ‘1’ and +3V to +15V for a logic ‘0’. Normally the data lines
will be in the idle condition, which is represented by a logic ’1’ level (referred to as the idle,
off or mark state). A start bit is represented by a logic ’0’ level (referred to as the on or space
state) and is therefore distinguishable from the line being in the idle state. Next follow the 8
data bits of the byte to send (least significant bit first), and finally two stop bits which are
represented by the logic ’1’ level. The stop bits in effect put the line back into the idle state.

In order to transmit data from the RX data line of the RS232 socket, it is first necessary to
set the Comms_Out bit of output port 239 to select RS232 output mode. The RX data line
then follows the state of the internal RX data bit of output port 247. When the Comms_Out
bit is reset, the RX data line is forced into the idle state irrespective of the value of the

Chapter 6

54

RX data bit. The other control bits (TX data, CTS and DTR) always appear at the RS232
socket irrespective of the state of the Comms_Out bit. Note that the RX data, TX data, CTS
and DTR bits of the output and input ports all use inverted values. Therefore to set the
RX data line to logic ‘1’ it is necessary to write a ‘0’ and vice versa, and when receiving a
logic ‘1’ the TX data line will read in as ‘0’ and vice versa. Likewise, to set the CTS line to the
on state (logic ‘0’ level) it is necessary to write a ‘1’ and vice versa, and when the DTR line is
in the on state (logic ‘0’ level) the DTR bit will read in as ‘1’ and vice versa.

The initial states of the RS232 signals after power up are as follows:

 The Comms_Out bit is reset, thereby deselecting RS232 output mode and forcing the
RX data line to the idle state.

 The CTS line is set to the on state.

 The internal RX data bit is set to the space state.

Ideally the CTS line should power up in the off state and the internal RX data bit should
power up in the idle state, but the behaviour stated above replicates the functionality of the
ZX Interface 1.

Pressing the reset button of the SPECTRA interface causes the internal RX data bit to be
reset to the space state but does not affect the Comms_Out bit or CTS line. The other
actions performed when the reset button is pressed are described in Chapter 8.

The procedure required for sending data from the RS232 socket is as follows:

 The CTS output line should be in the off state (logic ‘1’) and the internal RX data bit in
the idle state (logic ‘1’). The DTR input line will typically be in the off state (logic ‘1’).

 Set the Comms_Out bit to select RS232 output mode.

 Send each byte as follows:

 Repeatedly read the DTR input line until the end device signals that it is ready to
receive by setting the line to the on state (logic ‘0’).

 Transmit a start bit on the RX data output line, which is represented by the on state
(logic ‘0’).

 Transmit the data byte on the RX data output line, least significant bit first, using a
fixed delay time between bits. The off state is used to represent a binary ‘1’ and the
on state a binary ‘0’.

 Transmit two stop bits on the RX data output line, which are represented by the off
state (logic ‘1’).

 The end device sets the DTR line to the off state (logic ‘1’) while it processes the
received byte.

 The RX data and DTR lines are left in the off state (logic ‘1’).

Chapter 6

55

The Comms_Out bit should be left selecting RS232 output mode to avoid the potential
generation of a glitch on the RX data line. The Comms_Out bit should only be reset if the
serial routine is being used on a ZX Interface 1 and a Network operation is now to be
performed, in which case the internal RX data bit should be set to the idle state prior to
selecting Network mode else a glitch will appear on the Network lines.

The procedure required for receiving data into the RS232 socket is as follows:

 The CTS output line should be in the off state (logic ‘1’) and the TX data input line
should be in the idle state (logic ‘1’). The state of the Comms_Out bit is not important.

 For each byte to receive:

 Set the CTS output line to the on state (logic ‘0’) to signal that the end device may
transmit.

 Over a fixed length of time repeatedly look for the start bit on the TX data input line,
which occurs when it transitions from the off state (logic ‘1’) to the on state (logic ‘0’).
If a transition does not occur within the time period then set the CTS output line to
the off state (logic ‘1’) and try again to receive a byte. This is required since it is
possible that the end device began transmission of a byte just prior to the CTS
output line being set to the off state.

 Receive each data bit on the TX data input line, using a fixed time delay to
determine the middle position of each bit. A binary ‘1’ is represented by the off state,
and a binary ‘0’ by the on state. The data byte arrives least significant bit first.

 Receive the two stop bits on the TX data input line (note that the ZX Interface 1 ROM
only checks for the first one), which are represented by the off state (logic ‘1’).

 Set the CTS output line to the off state (logic ‘1’) to signal to the end device not to
send another byte.

 It is possible that the end device began transmission of another byte just before the
CTS output line was set to the off state. It is therefore necessary to perform a check
for a second byte and to buffer it if there is one. The next call to read a byte should
detect that one is already waiting in the buffer and return it instead of trying to read
another in from the RS232 socket.

 The TX data input line should be left in the idle state (logic ‘1’) and the CTS output line
left in the off state (logic ‘1’).

ZX Interface 1 ROM hook codes

The ZX Interface 1 provides access to a core set of its ROM routines via the use of hook

codes. This mechanism was introduced so that routines could be called without the need
to know their actual locations within the ROM, thereby allowing programs to operate
correctly with any future revision of the ROM irrespective of whether the core routines
changed location. Officially, two editions of the ZX Interface 1 ROM were released, with the
second being shipped in all units with a serial number greater than 87315. However, there
was also reference to a third edition of the ROM made in Your Spectrum magazine [3],
although this version might never have been publicly released.

Chapter 6

56

The hook code mechanism is invoked from machine code using a RST $08 instruction,
and it is the byte that follows that specifies the hook code number of the desired routine.
There are three hook codes that relate to the RS232 facility, although one of these was only
introduced with the second edition ZX Interface 1 ROM.

Hook code $1D is available in both ROM editions and is used to read in a byte from the
RS232 socket. It requires that the additional system variables used by the ZX Interface 1
ROM are already present (these may be created beforehand using hook code $31), and
sets the carry flag if a byte was found and returns it in the A register. The data is expected
at the baud rate specified by system variable BAUD ($5CC3), and the border will flash
during receipt of the byte with the colour specified by system variable IOBORD ($5CC6).
Interrupts are always enabled at the end of the routine irrespective of whether a byte was
read in or not. If the BREAK key is pressed then BASIC error report L BREAK into program is
produced.

Hook code $1E is available in both ROM editions and is used to write out a byte to the
RS232 socket. It requires that the additional system variables used by the ZX Interface 1
ROM are already present (these may be created beforehand using hook code $31), and
transmits the byte held in the A register. The data is sent at the baud rate specified by
system variable BAUD ($5CC3) and the border will flash during the transmission with the
colour specified by system variable IOBORD ($5CC6). Interrupts are always enabled at the
end of the routine. If the BREAK key is pressed during the transmission then BASIC error
report L BREAK into program is produced.

Hook code $34 was introduced in the second edition ROM and is used to open a ‘B’ binary
channel. It requires that the additional system variables used by the ZX Interface 1 ROM are
already present (these may be created beforehand using hook code $31). The channel
base address is returned in the DE register pair. If there is not enough room to create the
channel then BASIC error report 4 Out of memory is produced. This hook code is less likely
to be of use than the other two that relate to the RS232 facility.

For further details about the ZX Interface 1 RS232 routines, refer to the Spectrum Shadow

ROM Disassembly book [4]. Alternatively, online commented assembly listings for both
editions of the ZX Interface 1 ROM are available for free download from website
www.wearmouth.demon.co.uk [5].

CHAPTER 7

Chapter 7

CHAPTER

Chapter 7

59

ROM support
The SPECTRA interface provides the facility to support an external ROM, which can either
be used to override the Spectrum’s BASIC ROM with a custom program, or to supplement
the BASIC ROM with new commands via a paging mechanism identical to that employed
by the ZX Interface 1.

An external ROM can be attached in one of two ways - it can be a programmable ROM
(PROM) fitted in an IC socket or it can take the form of a ZX Interface 2 ROM cartridge that
plugs into an edge connector socket. In either case, the Spectrum’s ROM may be
overridden or extended, and so both forms can be considered to be equivalent. However,
there are different merits to the two approaches.

The onboard ROM approach provides a more resilient and low profile solution but can only
support a 28 pin DIL 16K PROM, such as a 27C128 (16K) erasable PROM (EPROM). If fitted
with a 27C256 (32K) EPROM or a 27C512 (64K) EPROM then only the last 16K bank will be
used. It is recommended to use an IC socket so that the PROM can be readily removed
and replaced should it ever need to be reprogrammed. An alternative is to use a zero

insertion force (ZIF) socket, which has a lever mechanism to make the insertion and
removal of the PROM very easy. It is recommended to fit a turned-pin IC socket and then
plug the ZIF socket into this.

A ROM cartridge socket allows the use of original ZX Interface 2 ROM cartridges as well as
modern day designs, such as the ZXC range that supports a paging mechanism to support
larger capacity ROMs and thus a compilation of 16K, 48K and 128K programs on a single
cartridge. Cartridges equipped with a FLASH ROM can be programmed directly from the
Spectrum, thereby avoiding the need and expense of a dedicated PROM programmer and
eraser. A compilation of custom made ROM files (e.g. diagnostic programs) and snapshots
of cassette based programs (created using an emulator) can be assembled using the free
Cartridge Creator utility (which runs on Microsoft Windows®) and downloaded to the
Spectrum using the RS232 socket of the SPECTRA interface. The Spectrum then performs
the process of erasing the previous contents of the FLASH ROM in the cartridge before
writing the new compilation data into it. Full details about the ZXC range of ROM cartridges
and the Cartridge Creator utility can be found at the ZX Resource Centre website [6].

The SPECTRA interface contains the necessary control circuitry to operate either form of
external ROM, but by default it does not include the IC socket required for an onboard ROM
or the edge connector socket required by a ROM cartridge. If either form of external ROM
facility is desired then the appropriate type of socket must be obtained and soldered in
place. Note that the two options are mutually exclusive because it is not physically possible
to have both fitted at the same time, as shown in photograph overleaf.

Chapter 7

60

Overlapping ROM socket footprints

The outline labelled U5 can be fitted with a 28-way DIL IC socket to allow an onboard ROM
to be used. The outline labelled P4 can be fitted with a 2 x 15-way edge connector socket
to allow the use of ZX Interface 2 ROM cartridges.

The table below summarises the different ROM modes supported by the SPECTRA
interface:

ROM
cartridge
present

Onboard
ROM

enabled

Paging
mode

enabled
Operating mode

No No Yes / No Spectrum ROM permanently paged in

No Yes No Onboard ROM permanently paged in

Yes No No ROM cartridge permanently paged in

No Yes Yes Onboard ROM paged in on ZX Interface 1 address

Yes No Yes ROM cartridge paged in on ZX Interface 1 address

Summary of supported ROM modes

A ROM cartridge or an onboard ROM should only ever be inserted or removed while the
Spectrum is powered off, otherwise a crash will occur and damage may result to the
hardware. With an external ROM connected and enabled, it is the state of configuration
switch 3 that determines whether the Spectrum’s BASIC ROM will be overridden or
supplemented.

Overriding the Spectrum’s ROM

The Spectrum’s ROM can be overridden by setting configuration switch 3 to the off
position. The SPECTRA interface will automatically detect and enable a ROM cartridge if
one is plugged in, but to use an onboard ROM requires manually enabling it by setting
configuration switch 2 to the on position. Either form of external ROM will remain enabled
even after the Spectrum is reset. If an onboard ROM is fitted but configuration switch 2 set
to the off position then the onboard ROM is disabled and will lie dormant. If a device
connected behind the SPECTRA interface requests access to the ROM address space then
an onboard ROM or a plugged in ROM cartridge will be disabled to allow the device
access.

Chapter 7

61

Supplementing the Spectrum’s ROM

The Spectrum’s ROM can be supplemented to extend Sinclair BASIC with new commands
by setting configuration switch 3 to the on position. Either a ROM cartridge must be
plugged in or an onboard ROM enabled via configuration switch 2 being set to the on
position. In this mode, the paging mechanism implemented by the ZX Interface 1 is
reproduced by the SPECTRA interface. This paging mechanism extends Sinclair BASIC by
detecting when the BASIC ROM is about to display an error report on the screen and
passing control over to the ZX Interface 1 ROM so that it can attempt to handle the
command causing the error. Note that the ZX Interface 1 ROM is also known as the
Shadow ROM, with the Spectrum’s BASIC ROM then referred to as the Main ROM.

The ZX Interface 1 intercepts the error handler routine within the BASIC ROM at address
$0008. Its hardware pages in the Shadow ROM after the first byte of the instruction is read
in, and so the remaining bytes of the instruction are fetched from the Shadow ROM (which
means that the instruction in the Shadow ROM must be same as that in the Main ROM).
Execution then continues using the Shadow ROM. Normally the error handler routine would
have displayed the appropriate error report message, but now the Shadow ROM has the
opportunity to analyse the cause of the error and to determine whether it was due to the
syntax of one of its new commands. If it was then the corresponding command handler
within the Shadow ROM is executed, otherwise a return is made to the Main ROM so that
the original error report message can be displayed. After the new command handler has
completed, a switch back to the Main ROM is made via a call to address $0700. Fetching
an instruction from this address is detected by the hardware and it pages back to the Main
ROM after a byte has been read in (this limits the size of the instruction to a single byte).
There is a RET instruction at this location within the ZX Interface 1 ROM and so the call
immediately returns but now to a location within the Main ROM. The ZX Interface 1 paging
mechanism also intercepts an instruction fetch from address $1708, which is located
midway through the CLOSE# BASIC command handler. This is done because the
command handler in the BASIC ROM does not support the enhanced channel format
introduced for the new ZX Interface 1 facilities and so an alternate routine needed be used
instead. The Shadow ROM is paged in after the first byte of the instruction is read in and so
the Shadow ROM contains the same instruction at this address as in the Main ROM
(although note that the instruction at this location happens to be only a single byte in
length).

Supplementing the Spectrum’s ROM using the ZX Interface 1 paging method has a
number of advantages. It allows a ZX Interface 1 fitted with the first edition ROM to be
effectively upgraded by overriding it with a newer version held in the external ROM of the
SPECTRA interface. The newer version could simply be a copy of the second edition
ZX Interface 1 ROM or could be a customised version that has all remaining bugs fixed.
You can tell if your ZX Interface 1 has a first edition ROM by typing PRINT PEEK 23729,
which will return a value of 0 with a first edition ROM and 80 with a second edition ROM.
Even if ZX Interface 1 hardware is not connected, it is still possible to make some use of
the new commands introduced by the ZX Interface 1 ROM. For instance, the extended
BASIC can be used to control the SPECTRA interface’s RS232 socket, and the new

Chapter 7

62

command CLS# (which resets the screen colours) will operate successfully since it does
not rely on the ZX Interface 1 hardware. However, the most beneficial reason for using the
ZX Interface 1 ROM is that it already contains the necessary infrastructure to handle new
BASIC commands and yet only occupies half of the available ROM space (the
ZX Interface 1 ROM is 8K in size whereas the SPECTRA interface supports a 16K external
ROM).

Should the external ROM be currently paged in at the moment that the Spectrum is reset
then it will be automatically paged out. It will also be paged out when configuration
switch 2 is set to the off position and there is an onboard ROM fitted. If a device connected
behind the SPECTRA interface requests access to the ROM address space then an
onboard ROM or a plugged in ROM cartridge will be disabled to allow the device access.

Adding new BASIC commands

The process of creating new BASIC commands is well documented in Sinclair literature
due to the ZX Interface 1 ROM naturally providing a mechanism to extend Sinclair BASIC.
The mechanism requires the new commands to be run from RAM and so they need to be
loaded every time the Spectrum is reset. Having these commands in ROM has the
advantage that they are instantly available and do not take up valuable RAM space. The
process of hooking the commands into the parser of the ZX Interface 1 ROM will be
different but the approach used to examine the syntax of the new commands can be the
same. The operation of the ZX Interface 1 command parser and examples of adding new
BASIC commands are described in the Spectrum Shadow ROM Disassembly book [4] and
the Spectrum Micro Drive Book [7]. Another useful reference is The Complete Spectrum

ROM Disassembly book [8] as it will often be necessary to make calls into the BASIC ROM.
A commented assembly file of the second edition ZX Interface 1 ROM is available from
www.wearmouth.demon.co.uk [5] and provides an ideal starting point for creating a
customised version of the ROM. The first place in this file to examine is the routine at
location $01AA which is responsible for identifying the token of the BASIC command that
produced the syntax error that caused the ZX Interface 1 ROM to be paged in. This routine
could be patched to perform checks for further tokens, or the command handlers that are
currently called could be patched to support alternate forms of those commands. Each
patch should change the existing ROM code as little as possible by simply redirecting
program execution into a continuation routine located within the additional 8K space. In
this way, all routine address entry points remain the same and so existing machine code
programs that directly rely on them will still function correctly.

Although it is possible to remove unwanted commands from the ZX Interface 1 ROM to
make additional space available, it is recommended to keep them in place so that the
enhanced ROM is fully backwards compatible with all existing programs.

Supporting the new attribute modes

One use for the additional 8K of space would be to add BASIC commands that select and
operate on the new attribute modes provided by the SPECTRA interface. However, as
mentioned in Chapter 4 the attribute files of the new display modes overlap with the BASIC

Chapter 7

63

environment’s system variables and program listing area. This problem can be partially
overcome by shifting the BASIC program up in memory until it is beyond the extent of the
new attribute files, thereby creating a gap between the system variables and the BASIC
program area. This can be done by adjusting the Spectrum’s system variables to create a
region between the Channel Information area and the BASIC program area (much in the
same way that the ZX Interface 1 inserts its new system variables after the standard ones).
The region could be created upon the first invocation of the external ROM, or once a new
attribute mode has been selected. The size of the region would need to be large enough
for the selected attribute mode, and could be dynamically adjusted when changing to a
different attribute mode. An alternate approach would be to simply create a region large
enough to accommodate all of the new attribute modes, but this would result in a less
efficient use of memory.

Shifting the BASIC program would allow most of the new attribute modes to be supported,
except for all row and single line modes that use double byte colour since their attribute
files overlap the Spectrum’s system variables. The size of the region required to shift the
BASIC program area above the attributes file for each attribute mode is shown in the
following table.

Attribute mode Region size
Lowest address
of BASIC area

Row mode, basic colours, single byte $0000 $5D05

Row mode, basic colours, double byte Mode not supported

Row mode, extra colours, single byte $0000 $5D05

Row mode, extra colours, double byte Mode not supported

Quad line mode, basic colours, single byte $08FB $6600

Quad line mode, basic colours, double byte $10FB $6E00

Quad line mode, extra colours, single byte $08FB $6600

Quad line mode, extra colours, double byte $10FB $6E00

Dual line mode, basic colours, single byte $0EFB $6C00

Dual line mode, basic colours, double byte $1EFB $7C00

Dual line mode, extra colours, single byte $0EFB $6C00

Dual line mode, extra colours, double byte $1EFB $7C00

Single line mode, basic colours, single byte $1AFB $7800

Single line mode, basic colours, double byte Mode not supported

Single line mode, extra colours, single byte $1AFB $7800

Single line mode, extra colours, double byte Mode not supported

Shifted BASIC area required for each attribute mode

Chapter 7

64

These figures assume that the 58 bytes required for the ZX Interface 1 system variables are
also created. Note that the creation of Microdrive Maps and additional Channel Information
entries would further shift the BASIC program up in memory. This would result in some
wasted space but could only be avoided by further patching of the ZX Interface 1 ROM.

The new BASIC commands required to operate the different display modes could make
use of the streams and channels mechanism built into the Spectrum by introducing a new
channel type, e.g. ‘D’. A stream could then be opened to this channel using the OPEN
keyword, e.g. OPEN #4;"D". Once opened, characters could be sent to the stream using
standard PRINT commands, e.g. PRINT #4;"SPECTRA". It would be necessary to provide a
way to select the active display mode and so a command such as FORMAT "D";n could
be used (where n would specify the mode number). An enhanced version of the INPUT
statement could be implemented to operate with the active display mode, e.g.
INPUT #4;"Enter your name";N$. Other commands that operate on the screen could be
implemented using syntax similar to that introduced by the ZX Interface 1, i.e. by following a
command keyword with a symbol. The use of a symbol ensures that the statement fails the
Spectrum’s standard command parser, and so allows the Shadow ROM a chance to
handle it. The commands introduced by the ZX Interface 1 ROM use an asterisk for this
purpose. This works fine when used with commands SAVE, LOAD, VERIFY and MERGE,
but if used for new commands that expect a numeric parameter then the symbol could
appear to be a multiplication sign and might lead to confusion. Therefore, an alternate
symbol such as the percentage sign would a better choice. The new display modes could
then be controlled using a range of commands such as BORDER %, PAPER %, INK %,
FLASH %, CLS %, DRAW %, PLOT %, CIRCLE %, COPY %, etc.

Should the active display mode be set to the Spectrum’s standard screen format then the
new BASIC commands could simply delegate to the existing routines in the BASIC ROM.
New system variables might be required by the commands and so additional entries could
be inserted after the ZX Interface 1 system variables.

CHAPTER 8

Chapter 8

CHAPTER

Chapter 8

67

Reset button and expansion bus

Reset button

The SPECTRA interface provides a button that allows the Spectrum to be reset without the
need for removing and re-inserting the power connector, thereby reducing wear on the
connector and the power socket. Momentarily pressing the button will reset the Spectrum
and also causes the following actions to be performed:

 The standard display mode is selected (the display mode register is reset to $00).

 The state of the RS232 internal RX data bit is set to the space state.

 The Spectrum’s ROM is paged back in if an external ROM is active and the BASIC
extension mode is enabled (although it will be immediately overridden if a rear
device is requesting access to the ROM address space).

Note that the Comms_Out bit and CTS line of the RS232 port are not altered by pressing
the reset button, and this behaviour replicates that of the ZX Interface 1. Ideally the RS232
internal RX data bit should be set to the idle state upon a reset but it is set to the space
state to reproduce the behaviour of the ZX Interface 1. If the Comms_Out bit is reset at the
time the button is pressed then the RX data output line will remain forced at the idle state
even though the internal RX data bit will be set to the space state.

Rear expansion bus

The SPECTRA interface provides a full width rear expansion bus to allow further devices to
be attached behind it. The rear expansion bus contacts are gold plated to prevent them
tarnishing easily and therefore to improve the reliability of the electrical connection, but
should any tarnishing occur then this can be treated by wiping a small amount of electrical
lubricant on to them, e.g. WD-40.

The expansion bus contains all of the signals exposed by the Spectrum except for the
video related signals /Y, U, V, 0Vvideo and VIDEO, which are used exclusively by the
SPECTRA interface to synchronise the TV picture it generates with that produced by the
Spectrum. The signals already contain a large amount of electrical noise and so they are
not passed through to the rear expansion bus to avoid further pickup of interference, which
might otherwise prevent the display synchronisation mechanism working correctly.

The /IORQ line that appears on the rear expansion bus is not directly connected to that
output by the Spectrum. This is done to allow the SPECTRA interface to filter out accesses
to the display mode register when the additional display modes functionality is enabled.
This is required so that the SPECTRA interface can coexist with (most) devices that also
use a base I/O address of $DF and also with Kempston joystick interfaces that do not fully
decode the joystick input port address. The SPECTRA interface forces the /IORQ line
exposed on its rear expansion bus to logic ’1’ whenever an access to the display mode
register occurs. This prevents devices connected behind it from detecting, and therefore
responding, to such accesses. This issue is discussed in more depth in Appendix B.

Chapter 8

68

When the additional display modes are disabled via configuration switch 6, the SPECTRA
interface simply passes all I/O requests through to the rear expansion bus unfiltered,
thereby achieving full I/O compatibility with all existing devices.

APPENDICES

APPENDICES

Appendix A

71

Power usage
The SPECTRA interface uses a sizeable amount of current, but the Spectrum power supply
is more than capable of handling this. However, if other peripherals are also attached then
care must be taken to ensure that the power supply’s current rating is not exceeded.

The Spectrum power supply outputs a nominal 9VDC and is capable of delivering 1.4A. The
table below shows typical current usage for the SPECTRA interface and the range of official
Spectrum peripherals when in operation. To find the total current usage, simply sum up the
figures for the appropriate devices. The result should be less than 1.4A to ensure safe and
reliable operation. Note that the current used by a device can vary based upon its state,
and so the figures shown may actually be lower than the peak values and should therefore
only be used as a guide. The Spectrum power supply will generate heat when in use, the
temperature of which will be related to the amount of current drawn from it, and if more
current is drawn than the unit is specified to handle then it could heat up to a level where it
becomes a fire hazard. Should the summed current usage be close to the 1.4A rating of the
power supply, it may be wise to disconnect a peripheral or replace the power supply with a
higher rated unit.

Item Current (mA)

48K ZX Spectrum 640

SPECTRA interface 280

ZX Interface 1 90

ZX Microdrive (each) 190

ZX Interface 2 40

ROM cartridge 20

ZX Printer 210

Typical current usage of Sinclair devices

The SPECTRA interface generates its own 5V supply rail from the raw 9V input from the
Spectrum power supply. This is done to reduce the loading placed on the Spectrum’s
internal 5V regulator and therefore to avoid additional heat being generated inside the
computer. However, the optional onboard ROM and ROM cartridge socket facilities are
powered from the Spectrum’s 5V supply rail. This is done to ensure that the current draw of
the SPECTRA interface remains reasonably constant irrespective of which options are fitted.
A DC-DC converter is used by the SPECTRA interface to generate its 5V supply rail, and this
generates far less heat than the equivalent linear voltage regulator (as used inside the
Spectrum). By keeping the current draw restricted and relatively constant the need for a
heatsink is eliminated, and this helps keep the board size to a minimum. Note that the
DC-DC converter may still get hot and so care should be taken not to touch it, or to prevent

Appendix A

72

air circulation around it. The CPLD logic IC on the SPECTRA interface is also likely to get
hot and so should not be touched either.

Appendix B

73

Hardware compatibility
The SPECTRA interface provides various options to achieve compatibility with existing
Spectrum peripherals and software. Its RS232 port can be disabled to prevent a conflict
with a ZX Interface 1, and its joystick port can be disabled to prevent a conflict with another
device which already provides a Kempston joystick socket. Its new display modes can also
be disabled to ensure full I/O compatibility with all existing peripherals and software.

As described in Chapter 4, the new display modes provided by the SPECTRA interface are
controlled using an I/O port. In theory there can be up to 65536 different input ports and
65536 different output ports, but the range available on the Spectrum is significantly less
than this due to the use of partial address decoding. This method causes a device to be
selected when only a subset of address lines match a particular pattern, and often Sinclair
peripherals will check just one address line. For example, the ZX Printer is selected
whenever address line A2 is set to logic ’0’. This means that no other device may use an
I/O address in which line A2 is also at logic ’0’ otherwise a conflict will occur. The
advantage of using partial address decoding is that it reduces the amount of circuitry
required and therefore lowers the cost of the device. However, the disadvantage is that it
dramatically reduces the number of usable I/O addresses.

Some peripheral manufacturers made matters worse by decoding I/O address $FF (binary
11111111), which prevented other devices performing decoding on just the high order
address lines. As a result, peripheral manufacturers had soon used up all non-conflicting
I/O addresses, leaving no choice but for newer peripherals to duplicate on addresses. This
means that certain combinations of devices just cannot coexist with each other.

The SPECTRA interface uses I/O port $7FDF (binary 01111111 11011111, decimal 32735)
for both input and output to control its new display modes. It fully decodes all address lines,
thereby allowing other devices to use a base address of $DF and avoid conflict by using
different values for the high order address lines. However, devices which just decode the
base address $DF (binary 11011111) would clash. The SPECTRA interface attempts to limit
the number of such conflicting devices by preventing display mode register accesses
appearing on its rear expansion bus. It does this by forcing the /IORQ line exposed on the
rear expansion bus to logic ’1’ whenever an access to I/O address $7FDF occurs. Since
devices connected behind the SPECTRA interface are no longer able to detect such
accesses, they cannot respond to them. All other addresses which have a base of $DF are
passed through, and so a device will only fail to operate correctly should its software driver
happen to set the high order address lines to $7F during an I/O port operation (which is
unlikely since this is only one out of the 256 possible values). If the device’s software driver
does access I/O port $7FDF then the only solutions left are to disconnect the device or to
disable the new display mode functionality via configuration switch 6.

It is also possible for a conflict to occur with a device supposedly accessing a different I/O
port. As described in Chapter 5, the Kempston joystick socket uses input port $1F (binary
00011111, decimal 31), and so it should only be read when address lines A5 to A7 are all

Appendix B

74

at logic ’0’. However, some interfaces (such as the RAM Turbo) only check that address line
A5 is at logic ’0’ and this causes a problem because the display mode register I/O port
happens to have address line A5 at logic ’0’. Since the SPECTRA interface filters all display
mode register accesses from its rear expansion bus, connecting such a conflicting device
behind it will overcome the problem.

The Snow Effect

When the Z80’s I register is set with a value between $40 and $7F, the TV image produced
by the Spectrum breaks-up, with pixels apparently being randomly set or reset across the
screen. This is referred to as the snow effect. It is caused as a result of the Spectrum’s ULA
failing to recognise a memory refresh as a contention condition with the Z80.

The Z80 has built-in refresh circuitry to simplify interfacing to dynamic memory. When a
refresh operation occurs, the contents of the Z80’s I register are placed on the high order
address lines and the contents of the R register are placed on the low order address lines.
Setting the I register with a value between $40 and $7F causes memory refresh operations
to occur within address range $4000 to $7FFF, which is where the display and attribute
files reside. The ULA should detect and prevent such memory refreshes occurring when it
is fetching a display byte by temporarily halting the clock to the Z80. Its failure to do so
results in a corrupted address appearing on the address bus and hence the wrong byte
being fetched and displayed.

The SPECTRA interface attempts to replicate the snow effect but does not do so accurately.
This is because it contains static RAM and not dynamic RAM as used inside the Spectrum,
and the method of accessing this type of memory is sufficiently different. Therefore the
‘snow’ produced by the SPECTRA interface is not identical to that produced in the standard
TV picture. Note that ‘snow’ can occur in any of the attribute modes, and not just the
standard one.

The cause of the snow effect is described in detail in The ZX Spectrum ULA book [1].

Appendix C

75

Troubleshooting
This section provides a list of common problems and lists possible solutions. For solutions
suggesting the Spectrum is at fault, it is advisable to perform independent tests to verify the
cause before opting to replace components.

Symptom Possible cause Solution

No picture on the TV
and the video signal

absent indicator is off.

1. The Spectrum is faulty. Check that a picture is received
using the standard ‘TV’ socket of
the Spectrum.

 2. Dirty expansion bus
connections.

Remove dirt using an electrical
cleaning solvent (some can
damage plastic so care must be
taken).

 3. SCART socket on TV does not
support an RGB connection.

Consult TV manual. Try with all
SCART sockets on the TV.

4. SCART cable wiring not
suitable.

Check cable conforms to wiring
described in Chapter 3.

5. The Spectrum is not
generating a 12V signal.

Check that 12V appears on the
Spectrum’s expansion bus at pin
22B.

No picture on the TV
and the video signal

absent indicator is on.

1. Spectrum is an issue 1 or 2
and does not have the
internal video link fitted.

Solder in the video link. Refer to
Chapter 3 for details.

2. The Spectrum is a 128K
machine.

None. The SPECTRA interface is
not compatible with a 128K
Spectrum.

Cannot obtain the new
display modes or read
the display mode
register.

1. New display modes are
disabled.

Enable the new display modes
using configuration switch 6.

2. Conflict with another
peripheral.

Attach each peripheral one at a
time to identify which is
conflicting. Try connecting the
peripherals behind the SPECTRA
interface.

Other peripheral not
working correctly.

1. Peripheral not properly
decoding its I/O port.

Connect peripheral behind the
SPECTRA interface.

2. Conflict with the new display
modes.

Disable new display modes using
configuration switch 6.

Appendix C

76

Symptom Possible cause Solution

RS232 socket not
working.

1. Conflict with RS232 socket of
a ZX Interface 1.

Disable the RS232 socket on the
SPECTRA interface using
configuration switch 4 and use
ZX Interface 1 socket.

2. RS232 cable wiring not
suitable.

Check wiring is suitable for the
target device (see Chapter 6 for
wiring required to a PC).

Kempston joystick not
working.

Conflict with joystick socket of
another peripheral.

Disable the joystick socket on the
SPECTRA interface using
configuration switch 5 and use
other peripheral’s socket.

TV picture shifted to
the far left, or jumps
horizontally.

Using a flat screen Panasonic
TV.

None. Use another TV if available.
The problem is caused by the
Panasonic TV incorrectly
expecting a colour burst signal to
appear on the composite sync
line.

Picture is stretched
horizontally.

Using a widescreen TV that is
configured to automatically
stretch pictures having an
aspect ratio of 4:3.

Disable auto-stretch mode in the
TV.

Pixels have outlines
around them.

Using a TV that is applying
filtering in an attempt to improve
the picture, e.g. sharpening,
motion smoothing.

Disable all filters in the TV
intended to improve the picture
quality.

Cannot extend BASIC
using an external ROM
when paging mode is
enabled.

1. The onboard ROM is not
enabled.

Enable the onboard ROM using
configuration switch 2.

2. Dirty /M1 signal on the
expansion bus.

Remove dirt using an electrical
cleaning solvent (some can
damage plastic so care must be
taken).

3. The /M1 signal from the Z80
inside the Spectrum is faulty.

Replace Z80 CPU inside the
Spectrum. A /M1 fault can go
unnoticed since it is only used by
external devices, e.g. SPECTRA or
ZX Interface 1.

‘Snow’ appears on
screen all the time, or
does not appear when
expected.

The /RFSH signal from the Z80
inside the Spectrum is faulty.

Replace Z80 CPU inside the
Spectrum. A /RFSH fault can go
unnoticed since it is only used by
external devices.

Appendix D

77

References
This section provides a list of useful reference publications and websites.

[1] The ZX Spectrum ULA

By Chris Smith

2010, ZX Design and Media (www.zxdesign.info)

ISBN 978-0-9565071-0-5

[2] ZX Spectrum Microdrive and Interface 1 Manual

1983, Sinclair Research Ltd

[3] Your Spectrum

“new rom antics” by Andrew Pennell

Issue 18, September 1985, page 27

Sportscene Specialist Press Ltd

[4] Spectrum Shadow ROM Disassembly

By Gianluca Carri

1985, Melbourne House (Publishers) UK

ISBN 0-86161-191-8

[5] www.wearmouth.demon.co.uk

By Geoff Wearmouth

Online commented assembly files of ZX Spectrum and ZX Interface 1 ROMs

[6] ZX Resource Centre

By Paul Farrow

www.zxresourcecentre.co.uk

Documents original, unreleased and custom ZX Interface 2 ROM cartridges

[7] Spectrum Micro Drive Book

By Dr. Ian Logan

1983, Melbourne House (Publishers) UK

ISBN 0-86759-127-6

[8] The Complete Spectrum ROM Disassembly

By Dr. Ian Logan & Dr. Frank O’Hara

1983, Melbourne House (Publishers) UK

ISBN 0-86161-116-0

http://www.zxdesign.info/
http://www.wearmouth.demon.co.uk/
http://www.zxresourcecentre.co.uk/

Paul Farrow
www.zxresourcecentre.co.uk

http://www.zxresourcecentre.co.uk/

